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This thesis evaluates the possibility to automatically create a graphical 
user interface (GUI) from a formal description of the fields it should 
contain. A prototype has been developed for a limited domain of app-
lications—interfaces of configuration and maintenance components. 
The prototype reads a formal description in the ASN.1 syntax of the 
fields in the interface, allows some interactive changes to the interpre-
tation, and outputs the Java source code that creates the interface. 
 The generated source is to be used when developing plug-ins for 
an operation and maintenance framework, and special care has been 
taken to make the code as human readable and understandable as pos-
sible. This effectively means following strict quality norms—indent-
ing, commenting and modularizing the source code, as a human pro-
grammer ought to do. 
 The results obtained from the prototype have been very encour-
aging, indicating that large parts of the interface can actually be gen-
erated automatically. The prototype also generates some other parts of 
the plug-in, which helps structuring the rest of the code. The usage of 
an automated tool generally reduces the amount of tiresome and 
repetitive work, while also adding more robust input verification and 
avoiding some typical bugs. 
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Denna rapport utvärderar möjligheterna att automatiskt skapa ett gra-
fiskt användargränssnitt (GUI) från en formell beskrivning av de 
ingående fälten. En prototyp har utvecklats för en begränsad mängd 
applikationer – gränssnitt till konfigurerings- och underhållskompo-
nenter. Prototypen läser in en formell beskrivning i ASN.1 av gräns-
snittets fält, tillåter några interaktiva ändringar i tolkningen och 
skriver ut den Java-källkod som skapar gränssnittet. 
 Den genererade koden ska användas när man utvecklar kom-
ponenter till ett konfigurerings- och underhållssystem. Speciella hän-
syn har tagits för att göra koden så läsbar och förståelig som möjligt 
för ett mänskligt öga. Detta har inneburit att strikta normer för kvalitet 
har följts – koden har indenterats, kommenterats och modulariserats 
på samma sätt som en mänsklig programmerare borde göra. 
 De resultat som uppnåtts med prototypen har varit uppmunt-
rande, indikerande att stora delar av gränssnittet faktiskt kan genereras 
automatiskt. Prototypen genererar också några andra delar av kompo-
nenten, vilket hjälper till att strukturera den återstående koden. Att 
använda ett automatiskt verktyg innebär generellt att mängden trött-
samt och repetitivt arbete kan minskas, samtidigt som mer robust 
inmatningsverifiering kan läggas till och några typiska fel undvikas. 
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1.1 Background 

The Ericsson IP telephony system consists of several distinct components, each 
having its own control and configuration demands. As an important part of the 
system, the operation and maintenance (O&M) subsystem consequently must be 
able to handle this mixed set of network elements and configuration parameters.  
 The upcoming O&M system will have a strongly modularized architecture, 
delegating the actual management functionality to specialized plug-ins. Thus, in 
order to handle a new type of network element, a plug-in must be developed and 
installed into the O&M framework. Each plug-in, in turn, must be divided into 
several layers of functionality. These layers are typically responsible for graphical 
user interface (GUI), interface logic, data backup storage, etc. 

1.2 Problem 

The development of plug-ins is cumbersome, and major parts of the development 
are suitable for automation. By using information from the formal descriptions for 
each element, a functioning skeleton plug-in can be created automatically, 
reducing development time by an order of magnitude. Apart from speeding up the 
development process, automatic code generation also has other benefits—similar 
structure will be imposed on all plug-ins (having significant maintenance bene-
fits), interfaces will use standardized components, and some types of bugs will be 
avoided to a large extent. 
 Automatically generating source code is not trivial, however. The GUI 
component(s) can be guessed from the formal descriptions, but the selections 
made this way must be easy to change. Also, some data representations in the 
formal descriptions are not well chosen with respect to their actual contents and 
the mapping between data representation and GUI component is neither constant 
nor one-to-one. 
 Clever methods must be used for approximating the component choice, 
allowing the component to be changed dynamically, and converting underlying 
data to the format suitable for the chosen component. Ideally the automated 
process should also allow iterations, as already generated plug-ins may have to be 
regenerated when specifications change. The goal must be that automatically 
generated code should be at least as easy to maintain and extend as source code 
written entirely by hand. 
 There are several limitations to the results that can be obtained by automati-
cally generating plug-ins. User interface layout and program logic are two exam-
ples of parts that can hardly be created automatically. Neither are highly special-
ized plug-ins a target for automation. The generated code can only be a support 
for the plug-in programmer, as several parts of the plug-in cannot be created well 
by automatic means.  
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1.3 Purpose and method 

The main goal with this thesis was to show how far the automatic generation of 
the plug-in GUI could be pushed, and to implement these parts in a prototype 
application. Additionally, other parts of the plug-in creation have also been 
explained briefly and/or implemented in the prototype. 
 This thesis will primarily focus on three parts—analysis of the formal 
element descriptions, selection of components and other data structures, and code 
generation. Emphasis has been put on theory and design decisions, not on imple-
mentation details. For further information on the actual implementation, please 
refer to the source code comments.  
 The prototype application has been implemented in Java, and contains a set 
of solutions to the main problems. The prototype generates general, syntactically 
correct, indented and commented Java source code with some changes being 
necessary to fully fit the plug-in framework. 

���$1$/<=,1*�(/(0(17�'(6&5,37,216�
In this section the structure and analysis of the formal element descriptions is 
explained. The section consists of four parts—the three first containing back-
ground material. The first part introduces the element descriptions and their syn-
tax. The second part explains how grammars work and how they can be used to 
analyze a character stream. The third part deals with implementing such an 
analysis in Java. The last part, finally, reveals the techniques used and design 
decisions made in the prototype analyzer. 

2.1 Formal element descriptions 

Most of the elements in the Ericsson IP telephony system are configured and 
managed remotely with the Simple Network Management Protocol (SNMP, Case 
et al., 1990). SNMP is most commonly used to configure routers, gateways and 
other network elements on the Internet, and is an Internet Activities Board 
recommendation described in RFC 1157.  
 The SNMP standard requires all manageable elements to have their inter-
face described formally in a Manageable Information Base (MIB), a format 
described in RFC 1155 (Rose & McCloghrie, 1990). Each MIB typically contains 
a list of field and table names associated with their data types, access conditions 
and unique identifiers. 

The ASN.1 syntax 
The MIB files are normal text files written in Abstract Syntax Notation One 
(ASN.1, ISO 8824), an ISO standard for declaring variables, composite types and 
other structures. Actually only a subset of the full ASN.1 syntax is used in the 
MIB files, as defined in RFC 1155 (Rose & McCloghrie, 1990). The fields must 
also be declared using the macros defined in RFC 1212 (Rose & McCloghrie, 
1991) and RFC 1215 (Rose, 1991). 
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 The ASN.1 language is not a full programming language, but only contains 
type and structure declarations. Specialized encoders then use the structural 
declarations when encoding or decoding the actual data, the idea being that decla-
rations and low-level representations should be separated. Currently there exists a 
number of such encoders, the most commonly undoubtedly being the Basic 
Encoding Rules (BER) used with SNMP. 

Two simple ASN.1 examples 
The syntax of ASN.1 is somewhat different from that of a normal programming 
language, as can be seen in example 1. The example shows a simple declaration, 
written with the RFC 1212 extensions to the pure syntax. It is worth noting the 
lack of delimiter characters, something that makes recovery from input errors 
more difficult.  
 

cfgNumberLength OBJECT-TYPE 
 SYNTAX INTEGER   
 ACCESS read-write 
 STATUS mandatory 
 DESCRIPTION 
 "The number of digits that must follow the VG route  
 number in order to form a full number." 
 DEFVAL { 3 } 
::= { config 1 } 

 
Example 1. Declaration of an integer field cfgNumberLength with a default 
value of 3. The code also contains the access rights, the implementation 
status, and a short description. Finally a unique identifier is defined, in order 
to avoid referring to the field by its name. 

 
A more complicated declaration is shown in example 2, at least from the perspec-
tive of automatic code generation. The field is declared as having a data represen-
tation that does not correspond to the actual data content, causing the automatic 
code generator to select an inadequate or ill suited visual presentation. Overcom-
ing such difficulties is hardly possible without the usage of sophisticated 
heuristics or full natural language processing. 

Some disadvantages with ASN.1 
ASN.1 has several disadvantages compared to structure declarations in common 
programming languages, such as C or Pascal. The declarations tend to be large, 
non-compact and cluttered with keywords. Much repetition is also required for 
composite structures, as each part is declared twice—first with name and type 
inside the composite structure, and then afterwards with all the required parame-
ters. 
 The typical ASN.1 file is rather large, which stems in part from the use of 
long keywords like OBJECT-TYPE, SYNTAX and DESCRIPTION—being easy to read 
for the untrained eye, but requiring much unnecessary and error-prone copying 
when writing the MIB files. 
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cfgLGK1 OBJECT-TYPE 
 SYNTAX DisplayString 
 ACCESS read-write 
 STATUS mandatory 
 DESCRIPTION 
 "This is the IP address of the primary Local  
 Gatekeeper used by this voicegateway.  
 The address takes the form X.X.X.X where 
 X is an integer in the range of 0 and 255." 
 DEFVAL { "" } 
::= { config 2 } 

 
Example 2. Declaration of a normal string field cfgLGK1 containing charac-
ters. The string contents should be interpreted as forming a valid IP address, 
something only mentioned in the description. This is a typical case when the 
automatic code generation will not be able to present the field data in an 
adequate way. 

 
More implementation relevance has the free ordering of the constructs in ASN.1, 
something that cause much trouble when analyzing MIB files. The analysis must 
normally be made in at least two passes, as identifiers may be read before being 
defined or declared. 
 Another serious implementation problem is the fact that the basic types have 
no size limitation to their contents. Ranges can optionally be specified, but if no 
limit is specified the ranges are always supposed to be infinite. The use of infinite 
integers, infinite precision floats, and infinite length strings inevitably cause im-
plementation difficulties, as all actual programming languages specify limits to 
their basic types. If special care is not taken in all steps of implementation, the 
result may well be hidden size dependencies that can be hard to track down. 

2.2 Grammars and parsing 

In order to analyze a stream of characters a special technique, called parsing, is 
normally used. The parsing is divided into three steps, or passes—lexical analysis, 
syntactic analysis, and semantic analysis. In the lexical analysis, adjacent charac-
ters are grouped together into tokens, more or less like letters are grouped together 
into words when we read a normal text.1 In the syntactic analysis the stream of 
tokens is analyzed according to a grammar and a parse tree, i.e. a hierarchical tree 
grouping the tokens, is created. In the semantic analysis, finally, the information is 
extracted from the parse tree and converted into some internal representation. 
During all three stages errors in the input can be detected and reported. 

                                                                                                 
1 This is intended to reflect an intuitive idea on how we read texts, and is not to be understood as a 
proven fact. Psychological studies, on the contrary, show that the reading process is mostly based 
on direct image recognition of the words. This is, however, outside the scope of this thesis.  
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Grammars and productions 
The grammar is absolutely central to the parsing as it controls the input syntax and 
the structure of the parse tree (sometimes also called syntax tree). The choice of 
grammar also controls the parser behavior, as different grammar formats implies 
different implementation techniques. But to understand this we must first learn 
more about grammars. 
 A grammar is said to consist of a series of productions, i.e. rules, controlling 
the structure of the input. As an example a sentence production could state that a 
sentence should consist of a noun-phrase, a verb-phrase and a period (see example 
3). These parts in turn can be either tokens or references to other productions in 
the same grammar. The complete grammar consists of all the productions and 
tokens used therein. 
 

Sentence ::= NounPhrase VerbPhrase "." 

 
Example 3. A BNF description of a sentence consisting of a noun-phrase, a 
verb phrase, and a period. “Sentence” is the production being defined. 
“NounPhrase” and “VerbPhrase” are names of other productions (not shown 
here), and “.” is a reference to a period token.  

 
The grammar itself is normally expressed in BNF (Backus-Naur Form), which is 
a syntax for specifying context free grammars. Each production in BNF consists 
of a two parts—the production name and it’s definition—separated by a “::=” 
symbol. The definition of the production (to the right of this symbol) consists of 
the sequence of tokens and productions that defines it. 
 The productions can also be more complicated, as would be the case of a 
paragraph that consists of one or more sentences. In this case two alternative 
productions would be needed to express the full relation, as shown in example 4. 
The productions may also refer to themselves in various ways.  
 

Paragraph ::= Paragraph Sentence 
            | Sentence 

 
Example 4. Two productions expressing that a paragraph must consist of 
one or more sentences. Note the usage of “|” to simplify writing alternative 
productions with the same name.  

 

Different types of grammars 
There are various ways to express the grammar, even if using only strict BNF. 
One of the major differences is if the productions in the grammar are left- or right-
recursive, i.e. if the productions may refer to themselves in the first or in the last 
position. Other differences include the number of tokens that have to be known in 
advance to select among the alternative productions, and whether the input string 
should be read from left-to-right or from right-to-left. 
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 The two main families of grammars are the LL and LR grammars; both 
being read from left-to-right (which is what the first L means). The LL grammars 
are right-recursive, and in contrast the LR grammars are left-recursive. This is 
shown more clearly in example 5. 
 

Paragraph ::= Paragraph Sentence 
            | Sentence 
 
Paragraph ::= Sentence Paragraph 
            | Sentence 

 
Example 5. Two different possibilities to express the paragraph rule from 
example 4. The first version is a LR form of the rule, while the second is the 
corresponding LL form.  

 
The number of “look-ahead” tokens needed to choose among the alternative 
productions with the same name is normally stated in a parenthesis after the 
grammar family, as in LL(1), for a LL grammar with one token look-ahead. When 
specifying this number, the whole grammar must be analyzed and the highest 
number of tokens needed is the number that should be stated.  
 The LR grammars may still contain parts causing conflicts between 
alternative productions, at least for the type of parsers in use today. Therefore a 
subset of LR, called LALR, that contains some small limitations is normally used 
instead. As implementation complexity also rises with the usage of more look-
ahead tokens, the two types of grammars most used in practice are LL(1) and 
LALR(1). 

More ASN.1 disadvantages 
The standard ASN.1 grammar is neither LL(1) nor LALR(1), normally requiring 
some rewriting before a parser can be implemented (Rinderknecht, 1995). The 
main problem is the ambiguities—the need for a look-ahead of several tokens, 
some identical tokens having different names, and the use of empty productions.  
 

ObjIdComponent    ::= NameForm 
                    | NumberForm 
                    | NameAndNumberForm 
 
NameForm          ::= <identifier> 
 
NameAndNumberForm ::= <identifier> "(" NumberForm ")" 

 
Example 6. A part of the original ASN.1 grammar showing the need for 
more than one token look-ahead. When inside the ObjIdComponent 
production and having an identifier as the next token, two rules may be 
chosen.  
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The usage of a look-ahead of several tokens is shown in example 6 and causes 
much trouble when attempting to implement a simple parser. More care has to be 
taken when creating a parser that handles a look-ahead of more than one token, 
and it also slows down parsing considerably. 
 Two other issues in the ASN.1 syntax that cause problems are the difficulty 
to recover from errors and the language extensibility. In many languages declara-
tions are separated with the “;” character, allowing the parser to read until the next 
“;” upon error in the input. In ASN.1 the only separation is spaces, tabs and new-
lines, making error recovery difficult. The ASN.1 syntax can also be dynamically 
extended as macros are defined, something having the potential to make the parser 
infinitely complex, should one try to implement it. Most commercial ASN.1 
parsers seem to contain only a set of macros, but ignoring the full macro syntax. 

2.3 Writing a parser 

There are several approaches to writing a parser, but the most common is 
undoubtedly to use a parser generator, i.e. a program that from a grammar can 
generate the source code of the parser. Two of the most popular parser generators 
are the lex and yacc tools (or the GNU equivalents flex and bison) that generate C 
source code for the lexical and syntactic analyzer. The lex and yacc tools also 
exist in versions that generate Java source code (JLex and Cup), but these versions 
offer no integration between the lexical and syntactical analyzers (Berk, 1997). 
 The classical tools for parser generation also have several other problems, 
especially when used in an object-oriented environment. For an example, they 
don’t support automatic parse tree generation, something that would have required 
too much memory at the time when they were developed. Today, however, 
memory is not a scarce resource, and multiple pass compilers have become more 
common. As a result of the lack of parse tree creation, semantic analysis and 
action code must be inserted in the grammar, making the separation between 
syntactic and semantic analysis hard to impossible. This mixing up of the later 
stages in the parsing typically causes problems with maintainability, extensibility 
and complexity. 

Object-oriented parsing 
In a modern object oriented language a different approach is called for, especially 
one that uses the object oriented techniques for encapsulation of data and func-
tions in separate objects. It is also desirable to separate the syntactic and the 
semantic analysis in modules, making it possible to do small syntax changes 
without having to change the semantic analysis, and, more important, being able 
to change the analysis without regenerating the entire parser. 
 One approach to obtain a more object-oriented parser, is by using delegating 
compiler objects (Bosch, 1996). The grammar is then split into smaller parts, each 
part being handled by a separate compiler (or parser) object. When parsing the 
control is delegated between the various objects, effectively obtaining an object-
oriented modularization. 
 The approach with delegating compiler objects makes the grammar more 
extensible, as only small changes must be made to add a new parser object. 
Changes in the compiler are also made simpler and safer, as modules are smaller 
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and easier to overview. The main drawbacks are that no special division between 
syntactic and semantic analysis is made, and that no such parser generator tools 
are available for Java. 
 Another way to create an object-oriented parser is by generating a full parse 
tree, thereby being able to separate the syntactic and semantic analysis. The 
object-oriented paradigm also supplies a natural and secure model for the parse 
tree implementation, with each node as a separate object. This allows for more 
secure changes in the tree structure, reducing the risk for inconsistencies and 
errors. 

JavaCC 
The most commonly used parser generator for Java is probably JavaCC (pre-
viously called Jack), made freely available for binary downloads by Sun Micro-
systems (Sun, 1999). It generates a recursive-descent parser in Java from a LL(n) 
grammar, allowing look-ahead of multiple tokens when choosing productions. 
The grammar is written in a special format that allows Java code to be added to 
the grammar productions, much in the same way as when using yacc. It is also 
possible to define grammar rules in the form of pure Java code, although this is 
not a recommended practice. 
 The parser generated is divided into several classes that may be replaced or 
extended by the user. It is also reasonably fast, and generates understandable 
messages upon errors in the input. However, there is only a rudimentary support 
for error recovery during parsing. The parser will generally fail upon the first 
error, making it difficult to report several errors in a single iteration. 
 A more fundamental problem with JavaCC, though, is the lack of support 
for generating parse trees. When inserting the parse tree generation code into the 
grammar files, the latter becomes messy and cluttered with Java source code all 
over. This design choice is probably an inheritance from the earlier, more 
primitive parser generator tools for imperative languages and older systems. 
 There are a couple of tools that can add code for parse tree generation to the 
JavaCC grammar files automatically, but none of them have proved very 
convincing when used with the ASN.1 grammar. In general the parse trees 
produced are not strongly typed, difficult to extend, and not adapted to the 
application at hand. The extra step when generating the parser is also irritating, 
and may cause some problems with reserved keywords, etc. 

SableCC 
A more modern approach to parser generation has been taken by SableCC, a 
parser generator developed by Éntienne Gagnon at the McGill University 
(Gagnon, 1998). SableCC is available both as binary and source code, and is 
released under the GNU GPL license, thereby allowing others to modify and 
further develop the code.  
 SableCC generates a table-driven bottom-up parser for a LALR(1) gram-
mar, just as the classical lex and yacc tools. It has many advantages compared to 
JavaCC, most notably being the automatic generation of the parse tree. The gener-
ated tree is also strongly typed, i.e. each grammar production is mapped onto a 
separate class. The child nodes can thus be accessed with specific methods in each 
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class, having the name of the child node type. The parse tree generated is thus 
more robust to syntax changes, as node positions in productions may be changed 
freely. 
 The current version of SableCC has a number of disadvantages, though. The 
grammar can only contain lowercase production and token names, the token 
definitions are complex, and only strict LALR(1) grammars are accepted. Fur-
thermore there is no support for error recovery, and the error messages generated 
during parsing are cryptic and filled with implementation details. Finally, as a 
result of the creation of named access methods for all child nodes in the parse tree, 
all alternatives in the grammar must be tagged with additional names to become 
uniquely identifiable. This includes both productions having the same name, and 
multiple identical references within a production. The usage of such tags in the 
grammar files can sometimes make them difficult to read.  

2.4 The prototype MIB parser 

When implementing the final parser for the prototype several small tests with both 
JavaCC and SableCC were performed, in order to decide which one to use. 
JavaCC was finally chosen as it would be easier to use and produce better error 
messages. Using SableCC would have required too much rewriting of the gram-
mar, causing undesired complexity where none would have been needed, and it 
would also have rendered the parser less usable, as the error messages would have 
become more cryptic and difficult to understand. 
 The choice of JavaCC also came with the additional cost of implementing 
the parse tree generation, as it was important to attempt to split the syntactic and 
the semantic analysis into separate modules. Apart from this the grammar had to 
be rewritten and a full semantic analysis with error checking and information 
extraction had to be implemented. 

Rewriting the grammar 
One of the first problems encountered when implementing the parser was the lack 
of a good and freely available ASN.1 grammar. The first prototype was based on a 
grammar extracted from the lex and yacc sources of Snacc, a freely available 
ASN.1 compiler. Later the complete ASN.1:90 grammar (in Rinderknecht, 1995) 
was encountered and the necessary changes to correct some errors and add mis-
sing constructs could be made. 
 In order to create a reasonable simple ASN.1 parser, some parts of the 
grammar were rewritten—removing the possibility to define macros, but adding 
two widely used SNMP macros. The more compact EBNF syntax was used, 
instead of the standard BNF, in order to save some productions. The resulting 
grammar (the one implemented) can be found in appendix A.1. 

Syntax analysis and parse tree generation 
The rewritten grammar also had to be converted to the special format used by 
JavaCC, and Java code to create the parse tree had to be added. Basically semantic 
action code was added to each production in the grammar, creating parse tree 
nodes as each production is parsed. Only the nodes needed in the later stages of 
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analysis were included in the generated parse tree, thereby effectively pruning the 
tree already upon creation.  
 The solution to create the parse tree “by hand” inside the syntactic analysis 
became necessary when using JavaCC, but proved to generate a syntax analyzer 
that was hard to read and modify. The parse tree, on the other hand, became well 
adjusted to the task at hand and could easily be modified when needed.  
 The parse tree framework was strongly influenced by the models found in 
SableCC (Gagnon, 1998, p. 52ff). Each node in the parse tree was represented by 
a separate object, and support for parse tree walker (or iterator) classes was also 
implemented. Having separate tree walker classes made the implementation of a 
multi-pass semantic analyzer  fairly simple and straightforward, as all the details 
of tree walking had been isolated in separate classes. 
 One major difference in the SableCC model, however, is that the parse trees 
use strong typing, i.e. each production and token type is implemented in a separate 
class. The prototype parse trees, on the other hand, do not use strong typing, as 
generating that number of classes by hand would have been a too repetitive and 
error-prone work. Instead each node is assigned a unique number representing it’s 
type, and child nodes are accessed through general-purpose methods. 

Semantic analysis and data structures 
After the creation of the parse tree structure, the semantic analysis processes the 
tree in two passes. In the first pass all symbols (field names, types, etc) are identi-
fied and created, and in the second pass they are filled with actual information. 
This division was needed as symbols may be used before being declared. 
 The symbols created during the semantic analysis were modeled closely 
after the ASN.1 symbol structures, making the analyzer fairly simple and easy to 
implement. This design choice proved to have disadvantages later on, as it became 
difficult to separate different types of symbols from each other. Also some special 
ASN.1 deficits were inherited, as for example the table symbols having only 
indirect access to the column data types. 
 Some changes and additions were made to the original model as the 
prototype developed, but these were not quite enough to make symbol handling 
easy in the rest of the prototype. There is still need for a redesigned symbol 
structure, especially one where different types of symbols are split into a class 
hierarchy. The creation of these more specialized symbols should probably be 
placed as a third pass in the semantic analysis, converting all the old symbols to 
more specialized ones. 
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This section explains how the prototype application selects graphical components 
for the plug-in interface. The first part details how a plug-in interface is structured 
and how the MIB fields are mapped to components. The second part describes 
how the user can interact and change components while creating the plug-in. A 
number of screenshots from the prototype are also included. 

3.1 The plug-in interface 

A plug-in in the operation and maintenance system should be divided into several 
layers of functionality. In the lowest layer the actual SNMP transactions are 
handled, and in the highest layer data is presented to the user in a graphical user 
interface (GUI). Between these two extremes are the other layers, responsible for 
interface logic, temporary data storage, and data dependencies. 
 In a standard MIB file the number of fields is quite high, making it impos-
sible to show them all at once. A normal plug-in interface therefore consists of a 
set of tabs, as can be seen in figure 1. Each tab contains a reasonable number of 
related fields with some usable layout. 
 

 
 
Figure 1. A plug-in interface is normally a set of tabs, as the amount of 
information presented to the user would otherwise be overwhelming. The 
interface on each tab is usually more complex than in this simplified figure. 

Java interface components  
A graphical user interface in Java is constructed as a hierarchy of special objects 
called components. Each component can be either simple, as a label or a text field, 
or a compound of other components, as a tab panel. The simple components are 
layout inside the compound ones using special layout information that can be 
provided inside the program. 
 There are two component hierarchies in Java—the older AWT components, 
and the newer Swing components. Both are included in the modern Java platforms 
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and the Swing components can also be mixed with the AWT components without 
much trouble. As Swing is a newer and more feature-rich solution it is the 
recommended choice for most applications, especially if they are not required to 
run from any old web browser. 
 The plug-in interfaces use the Swing components as they provide a richer 
set of features and are more extensible. Some additional components have been 
written to handle specialized data, as numeric IP addresses, and to fill some gaps 
missing in the Swing framework. Especially input verification in the components 
is needed for the plug-ins. 

From fields to components 
It is worth noting that many data fields require several components in the inter-
face, as labels are sometimes necessary to for provide information about the data 
presented (see for example figure 1). This means that the mapping from MIB 
fields to components in the plug-in interface cannot be one-to-one, as several 
components will have to be generated on some occasions. 
 The mapping from data type to component is not always obvious, and on 
some occasions it may also be impossible to do by automated means, at least with 
a satisfying result. The choice of interface components is normally a decision that 
involves aspects of human-computer interaction, which means that it is not easily 
formalized into simple rules. The result of the automatic mapping from data type 
to component will therefore sometimes be mistaken, as it does not take the data 
semantics and context into account. 
 

Table 1. The default mapping from field to component depends on both 
data type and access. In the case of integers with enumerated values, the 
value labels are also checked for common “boolean” substrings (“yes”, 
“true”, “on”, etc). The cells marked with (*) match any alternative. 
 

Data type Access Component 

String read-write JTextField 

String read JLabel 

Integer read-write JIntegerField 

Integer read JLabel 

Integer with enumerated values 
(boolean alternatives) 

read-write 
& read 

JCheckBox 

Integer with enumerated values 
(other alternatives) 

read-write JComboBox 

Array (*) JTable 

(*) write JButton 
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In table 1 the default mapping from data type to component is shown. Some of the 
components specified in reality also refer to additional labels, as such are needed 
in some cases. The mapping is not trivial and contains several special cases for 
data that may only be read. 

3.2 Interaction in the prototype 

Although a lot of information can be extracted from the MIB files, it is not 
reasonable to generate the plug-ins in a fully automated fashion. The grouping of 
the fields rarely corresponds to the structure in the MIB files, and the default field 
to component mapping may cause problems. It is therefore hardly sufficient with 
the simple command line syntax most compilers have, as such an interface would 
be far too complex. 
 Instead, the interaction called for is that of a graphical user interface, 
allowing the user to see the various component selections as well as information 
about each field. Using such an interface also gives an easy way to collect the 
additional information needed for the code generation, such as the plug-in name, 
output package, and output path.  
 The prototype created therefore provides an interactive graphical interface, 
instead of more standard command-line options. The main application window 
contains fields for entering all the plug-in creation parameters, as can be seen in 
figure 2. The window also displays which MIB files are currently loaded and a list 
of the field groups, called “tabs”. The MIB files and the tabs can then be further 
viewed in separate dialogs. 
 

 
 
Figure 2. The main application window contains global fields for the plug-
in creation, as well as a list of all tabs and MIB files. The values of all fields 
can be saved and restored from the menu, allowing some level of iterations 
to the plug-in development. 
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Having a richer interaction also provides natural open and save functions, 
allowing plug-in generation parameters to be stored to file for later usage. This 
also provides some level of iteration to the plug-in development, as the previous 
choices can be stored until processing the next version of the MIB. 

Structuring the fields  
The structuring of the fields into tabs is difficult to do automatically, as the struc-
ture inside the MIB files does not provide a division that is recommendable to use 
for the interface. The tabs are therefore created manually in the prototype. 
 Tabs are constructed in two steps; first the tab is created and named, and 
second a set of fields is assigned to the tab. The tab creation is done in the lower 
left part of the main window (see figure 2), and new tabs can be created at any 
time. If a MIB file has been loaded, the fields from it can also be assigned to one 
of the tabs, something normally done in the tab edit dialog (see figure 3).  
 By default the fields don’t belong to any tab, meaning that they will be 
ignored when generating the output plug-in. Each field may only belong to one 
single tab, and will thus be included in the output code for the plug-in and that 
specific tab. 
 Fields may also be loaded from several MIB files, which is sometimes 
necessary to allow common fields to be reused among several network com-
ponents. An important restriction to the capability to load several MIB files in the 
current prototype is that no two fields may have the same name. If field names are 
equal, the generated output code may contain duplicate variable names.  
 

 
 
Figure 3. The tab edit dialog allows moving free fields to and from specific 
tabs. The list of free fields is ordered as the fields appear in the MIB files, 
and fields are removed when inserted into a tab.   
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Changing the component mapping 
Once a field has been assigned to a specific tab, a component is automatically 
chosen with the default field mapping presented previously. The chosen com-
ponent can then be changed to any other component supported by the system, 
allowing the user to correct mistakes made in the automated process. 
 The changing of components is done in the MIB dialog (see figure 4), where 
all the fields in the MIB are presented along with analysis information. The tree 
structure of the MIB files is used for presenting the fields to the user, although this 
information is not used when actually generating the plug-in. 
 There is no one-to-one mapping between the components available for 
selection, and the components in the underlying Java Swing framework. The 
components available are really component generators, as they are also capable of 
generating source code for the component. The component generators also handle 
the creation of several components where needed, without the need for manual 
interaction. Several Swing components are also missing as they have little usage 
in a plug-in interface, and some new components have been added, such as an 
integer field and an IP address field. The user can also choose to not generate a 
component for a specific field. 
 When choosing to not generate a component, the field will be excluded from 
the graphical interface, but code will still be generated for lower layers in the 
plug-in. The exclusion of a field from the interface does not mean that the data 
will not be accessible, as it will still be present in the lower plug-in layers. 
 

 
 
Figure 4. The MIB edit dialog makes changing the selected component easy 
and straightforward. In addition most of the field information is displayed 
along with analysis messages. 
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This section explains how Java code for the plug-in is generated. The first part 
discusses general quality requirements on plug-in source code and how well these 
have been met in the prototype. The second part explains the design of the 
prototype code generator. 

4.1 Generating source code of high quality 

Generating source code is not trivial, as there are many dependencies between 
various files and code parts. The fact that the profession of programmers still 
exists (and is rather well paid) also indicates that automatically generated source 
code cannot solve all problems. In the case of generating plug-ins there are several 
such issues—user interface layout and logic, data interdependencies and program 
logic are all extremely hard to handle well in an automated fashion. The introduc-
tion of automated tools will not remove the need for plug-in developers, as several 
parts of the code must be inserted by hand. 
 In order to insert the missing parts, the generated Java source code must be 
possible to read, understand, and change by a plug-in programmer. Requiring that 
the programmer shall be able to read and understand the code is actually a rather 
hard requirement, as it means that the output code must be generally well-written 
and commented. The code must be of a high quality and should follow the same 
code conventions that the programmer is used to. In specifics this means that the 
generated code must be (in parts from Huss, 1993): 
 

• General 
• Modularized 
• Indented 
• Commented 
• Correct 
• Extensible 
• Robust 
• Compatible 
• Efficient 

The source code requirements 
That the code be general means that it should be possible to use for as many 
purposes as possible. Not only do there exist several distinct types of plug-ins, but 
it may also be the case that other plug-in platforms may be used. The generated 
code must thus be as general as possible, making it possible to reuse for other 
purposes. 
 Modularization means dividing the generated code into methods and classes 
responsible for parts of the functionality. Together with the indentation and 
commenting this highly improves the readability of the code for the plug-in 
programmer. 
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 Correctness means that the generated code must be possible to compile or 
that it at least is in such a state that it can be compiled with minimal additions. 
There should be no syntactic errors present in the code, and the semantics should 
of course also make sense, even if it the generated code is only a partial solution. 
 Extensibility means that the generated code shall be simple to extend with 
new functionality, either by changing or adding new methods. This requirement is 
only partially met by generating well-structured code, the other part needed is 
preserving these additions when generating the plug-in again. 
 Robustness means handling invalid user input in correct ways. The gener-
ated components must check their entry to the largest possible extent for errors, 
and should fail gracefully. 
 Compatibility means supporting the plug-in platform, something that in 
parts collide with the demand of keeping the generated code as general as pos-
sible. A special compatibility demand has been that the components should be 
possible to layout with the visual tools in Borland JBuilder 3. This means keeping 
the interface creation parts of the code within methods with particular names. 
 Finally the requirement of efficiency means that the generated code should 
not be any slower to execute than hand-made code. No additional lookups or run-
time conversions can be tolerated in the output code—all such computations 
should be made already when generating the code.  

Limits in the design 
In an ideal world, the generated plug-in programs should always fulfill all of these 
requirements. However, in the real world some of these requirements cause 
conflicts or excessive work when generating the plug-ins. In the following the 
design decisions that have put a limit to these requirements are explained in more 
detail. 
 The generated plug-ins are not totally correct, as they lack several important 
features. Some of these features have been left out as they were outside the 
original scope of this thesis, i.e. not related to the GUI generation. Others have 
been left out as they proved impossible to handle by automated means, as the 
component layout. Many parts left out in this way have been commented in the 
output source code. 
 The code is not always possible to compile directly as a result of using some 
method names that are not declared in the code. The idea is to allow the 
programmer to choose either an adequate superclass or to implement the method 
manually. In order to make this choice more obvious, no default alternative is 
generated. 
 The generated code is not fully extensible, as it is hard to avoid overwriting 
the source code on disk. That kind of support requires parsing it and keeping track 
of user changes, something that would have been a far to large task to undertake. 
 As there was a conflict between making the code more general or fully 
compatible with the plug-in platform used today, the choice was made to not 
make the code dependent on the plug-in platform. This means that the generated 
classes does not inherit any specialized superclasses from the plug-in framework. 
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4.2 Layered code generation 

There are basically two implementation strategies for automatic code generation. 
The output source code can either be partially written in separate files, called 
templates, or created totally by the program. Using templates usually makes it 
easier to maintain the code generator, as many changes can be made directly to 
the template files instead of in the generator.  
 Using templates when generating source code of high quality may cause 
problems, however, as it is important that the output be given a consistent format-
ting. It is also difficult to maintain the tight connection between the code genera-
tor and the templates, as these are split up into several files. The better solution is 
therefore to handle the code generation inside several specialized modules in the 
program. 
 An approach to generate the source code totally from within the program 
calls for some modularization, as it would otherwise be almost impossible to 
guarantee high quality of the output source code. The code generation in the 
prototype application has therefore been split into three layers—the Java syntax 
layer, the file or class layer, and the overall plug-in layer (see figure 5).  
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Figure 5. The source code generation is divided into three layers, each one 
only calling functions in the layer below. The syntax layer handles the 
syntactic constructs in Java, the file layer handles the dependencies between 
different files, and the plug-in layer controls what to generate. 

 

The Java syntax layer 
The Java syntax layer generates the actual text files containing the source code. It 
creates code for many of the basic syntactic constructs in the Java programming 
language—for example class, variable, and method declarations. The output text 
is also formatted following the recommendations in the Java coding style guide 
(Reddy, 1998). 
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 The use of a separate syntax layer guarantees that all the generated code will 
follow the same well-defined code conventions, while at the same time making it 
easier to change style. As an example, the number of spaces for each indentation 
level can be changed by modifying only a single constant in the prototype. The 
interfaces provided also makes it easier to generate the source code, as much 
complexity and details can be hidden. 
 The syntax layer consists of a set of classes, each representing a syntactic 
construct in the language. From these classes the concrete instances can be created 
and combined in the same ways that the Java syntax allows, making it impossible 
to generate output code that is not syntactically valid for those constructs (see 
figure 6). The top object in such a hierarchy is always a Java source file, and when 
writing those objects to disk all substructures are also written. 
 

 JFile 

JClass 

JVariable 

JMethod 

 
Figure 6. A simplified Java syntax structure. The file object can only have 
classes as children. The classes, in turn, can only accept variables and 
methods. These rules makes it harder to generate a non-valid Java file. 

 
In order to keep the syntax layer more effective and compact, only top level 
declarations are handled as specialized objects. Declarations and the actual code 
inside methods are handled as simple strings, opening up for syntactic errors and 
misspellings. It would, however, be difficult to create all the code as a reversed 
parse tree, in particular as that would require creating lots of objects in other parts 
of the code. 

The file layer 
A plug-in may consist of a considerable amount of source code files, each 
containing one or more Java classes. In order to structure those files correctly, and 
keep track of changing variable and method names, a file layer is inserted on top 
of the syntax layer to handle this. The file layer also inserts code and comments 
that are the same for all plug-ins. 
 The file layer consists of a set of classes, each modeling a single output file. 
Unlike the syntax layer, the file objects may not be freely created and combined, 
and other layers can only explicitly create two files—the plug-in file and the tab 
file. These two automatically create all other files below them in the hierarchy, in 
order to assure that all dependencies become correct. 
 The file objects also allows some level of manipulation through methods 
that can add code to the various files. These calls are translated to the syntax 
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layer, and each file object keeps an internal reference to the syntax layer objects 
needed. The file layer also communicates horizontally to a large extent, in order to 
assure that variable and method names are the same in the declaration and when 
using them. 
 By using a specialized file layer, the complicated dependencies between the 
files (as seen in figure 7) can be kept under control without much effort. The 
problems with exporting and importing variables and methods can also be 
approached in a safer manner, as each file object is responsible for creating the 
references to itself. 
 

PresentationLayerBusinessClientBusinessLayerDataLayer

PlugIn (.plg)

AccessLayer

Models Tabs

TabPanels

BusinessResource

PresentationResource

 
 

Figure 7. The structure of the plug-in source code files. Dependencies 
between files have been drawn as arrows from one class to another. Files 
with a dotted border are currently not generated by the prototype.  

 

The plug-in layer 
On top of the file layer the full plug-in generation is placed, handling such things 
as creating the tabs, the components, and everything that is related to the actual 
MIB fields. The major part of this layer consists of the component generation, as 
the prototype generates little more than skeleton code for the other parts. 
 The components and all related code are generated by component generator 
objects, making the component generation modularized and extensible. Apart 
from creating the actual source code, they also provide the simple demonstrations 
of the components that are available in the interface (seen in figure 4). 
 It is not trivial to add new components to the system, however, since each 
component is also responsible for generating its own source code. The number of 
component generators has therefore been limited in the prototype. Only the most 
commonly used components, such as text and number fields, have been imple-
mented in the prototype (see table 2). Some extensions to the standard Java 
components have also been made in order to simplify the code generated. 
 The component generators can be freely interchanged, with the exception of 
the table component generator. They all implement a uniform interface and read 
the type information direct from the symbols, allowing each component generator 
to handle its own subset of the type semantics. Currently the prototype does not 
handle type conversions from the underlying data types to the types needed in the 
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components, since that conversion is complicated to generate automatically and is 
outside the scope of this thesis. 
 In the current prototype implementation several of the plug-in layers are not 
completely generated. The access layer and the plug-in specification files are not 
generated at all (see figure 7), partly because they have a trivial structure and are 
simple to write by hand. The data and business layers are only generated as stub 
code, leaving out important parts of data conversion and inner mechanics. Fixing 
this would probably require a substantial effort, especially if the goal is to keep 
the generated plug-ins as general and multi-purpose as possible. 
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This section evaluates the results obtained and outlines the further work needed on 
the prototype. The first part mentions the known problems and simpler improve-
ments remaining to be done. The second part discusses a number of future 
extensions that could make the tool more powerful. The last part concludes that it 
was possible to automate large parts of the plug-in creation. 

5.1 Implementation improvements 

There are several possible improvements to the current prototype implementation, 
both in the user interface and in some of the internal data structures. Some of 
these issues are known and have been detected in late stages of the development, 
leaving too little time to correct them. In the following, the known improvements 
are listed along with an estimation of how much time it would take to implement 
them. The time estimates refer to a developer familiar with the prototype code 
organization, algorithms and data structures.  

Table 2. The component generators available in the prototype can only 
create a subset of the components in Java. 
 

Component Description 

Label A read-only text field 

TextField A text edit field 

IntegerField An integer edit field (not standard Java) 

IPAddressField A numeric IP address field (not standard Java) 

CheckBox A check box for true/false alternatives 

ComboBox A field that only allows one of a set of alternatives 

Button A push button 

Table A table of other components (not freely selectable) 
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Closing the dialogs (4 hours) 
Neither the tab nor the MIB edit dialogs contain close buttons, something that 
may be confusing to some users. It would therefore be good if such buttons could 
be inserted without making the interface more complicated than it already is.  

Reordering the tabs (1 day) 
The tabs are currently sorted in alphabetical order, which is clearly not the order 
in which they should be generated to the plug-in. The ordering should instead be 
possible to change by dragging and dropping in the tab list. 

Multiple MIB dialogs (1 day) 
It should be possible to view various MIB files at a time, which means making the 
MIB dialog non-modal. It should not be possible to have several dialogs viewing 
the same MIB, which can happen in the current implementation if the user double-
clicks the button. There are also some problems deciding what shall happen if the 
user unloads a MIB currently viewed or loads another plug-in. This must be 
solved before making the MIB dialog non-modal. 

Better error handling (5 days) 
Errors encountered in the MIB files are displayed immediately, but the original 
text is not shown. Storing the text inside the parse tree would require much 
additional work, but reading the file again is probably both possible and fast 
enough. Warnings should be handled in the same way, and should also be 
displayed immediately in a separate dialog or window. Ideally the application 
should launch a MIB editor allowing the user to correct the mistakes in the file. 

Symbol data structure change (5 days) 
The symbol data structure, used for handling the MIB fields and data types inter-
nally, is too closely modeled after the ASN.1 syntax. Some new models need to 
be defined for symbol and type information, making the symbols easier to use in 
the code generation. A third pass in the MIB analysis would have to be added, 
translating the old symbol model into the new one. 

5.2 Future extensions 

There are several parts remaining to be designed and implemented in the proto-
type application, especially to generate the data access and data logic layers. In 
the following, most of the possible extensions are listed along with an estimation 
of how much time it would take to implement them. The time estimates refer to a 
developer familiar with the prototype code organization, algorithms and data 
structures.  

Modularize the plug-in data layer (3 days) 
The data layer of the generated plug-in should not be a monolithic class, but split 
into separate modules. A better modularization would save much work and 
increase speed, as the data is currently transferred in whole blocks to the network 
element currently configured. This separation could be made from the branches in 
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the MIB, but might require that the internals of the MIB symbols be somewhat 
improved.  

Convert field data to component data (unknown) 
The low-level data representation is not always the same as the one used in the 
components. Some kind of intelligent type conversion must therefore be inserted 
in the business layer of the generated plug-in. Of course such a conversion would 
not be able to handle all conversions correctly, as it is not always clear what the 
mapping would be.  

Generating user interface tooltips (5 days) 
The generated plug-in user interface should contain tooltips, i.e. explanatory texts 
that are displayed when the user hoovers over the component with the pointer. 
This information could be extracted automatically from the field comments in the 
MIB, but must be possible to edit as the comments are not always suitable. This of 
course also means changing the file format when storing plug-in generation data, 
as the new text would have to be stored along with other information. 

Editing the interface labels (3 days) 
The labels that some components have in the interface should be editable. This of 
course also means changing the file format when storing plug-in generation data, 
as the new text would have to be stored along with other information. 

One field in various tabs (4 days) 
A field from the MIB files should be possible to include in various tabs, as it is 
needed in some plug-ins. Apart from changing inside the symbols, this would also 
require that the tab edit dialog be reimplemented to support an additional view of 
the fields. In the code generation special care would also have to be taken not to 
duplicate information in the lower plug-in layers. 

Preview of tabs (2 days) 
Currently example components are shown for each field, but it would also be 
good to be able to test the whole plug-in interface and all the tabs simultaneously. 
Ideally such a preview would also allow dragging the components, thereby gener-
ating a draft layout. 

Generating SNMP agent (unknown) 
The SNMP requests sent by the plug-in client are received by an agent (or server) 
in the other end of the communication. This agent is normally written in C and 
contains separate functions for each of the fields in the MIB. It would be of great 
value if stub code for these functions could be generated automatically, assuring 
that all fields used by the plug-in would also be handled by the SNMP agent. The 
most time consuming part of this would probably be creating a C syntax layer in 
the code generation. 
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5.3 Evaluation of the results 

The overall results from the prototype have been very encouraging—a user inter-
face could be created from the MIB files and the lower layers of the plug-in seem 
viable for automation. The prototype application addresses several issues not 
originally planned, as the creation of language resource files and data layer stubs, 
and produces code of a higher quality than originally thought possible. 
 Most of the troubles have been caused by the MIB parsing, something not 
anticipated before embarking on it. The component selection, on the other hand, 
proved almost trivial once the right approach was taken. The code generation 
layering was developed in an iterative fashion and was very successful in solving 
many of the problems with dependencies in the code. 
 Somewhat discouraging, though, has been the weak support from the 
organization. The plug-in developers have shown little interest in the prototype, 
resulting in a product that has not been tested in a real-world setting. Several bugs 
and mistakes will probably be revealed once such testing is actually performed. 
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A.1 Simplified ASN.1 grammar 

 
/* 
 * Simplified EBNF grammar for ASN.1:90 
 * 
 * Version:   1.2 
 * Date:      10th of August 1999 
 * Author:    Per Cederberg, qtxpece@etx.ericsson.se 
 * 
 * This grammar has been extracted from the yacc and lex  
 * sources of ’snacc’, a GNU ASN.1 to C or C++ compiler by  
 * Mike Sample.  It has then been modified and cleaned,  
 * making it simpler and more compact. Some additional  
 * types commonly used in Internet MIBs have also been  
 * added. 
 */ 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * 
 *  Module def/import/export productions 
 * 
 */ 
 
Start ::= ModuleDefinition 
 
ModuleDefinition ::= ModuleIdentifier "DEFINITIONS" [TagDefault]  
                     "::=" "BEGIN" [ModuleBody] "END" 
 
TagDefault ::= "EXPLICIT" "TAGS" 
             | "IMPLICIT" "TAGS" 
 
ModuleIdentifier ::= ModuleReference [ObjectIdentifierValue] 
 
ModuleBody ::= [Exports] [Imports] AssignmentList 
 
Exports ::= "EXPORTS" [SymbolList] ";" 
 
Imports ::= "IMPORTS" [SymbolsFromModuleList] ";" 
 
SymbolsFromModuleList ::= (SymbolsFromModule)+ 
 
SymbolsFromModule ::= SymbolList "FROM" ModuleIdentifier 
 
SymbolList ::= Symbol ("," Symbol)* 
 
Symbol ::= TypeReference 
         | Identifier 
         | DefinedMacroName 
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AssignmentList ::= (Assignment [";"])+ 
 
Assignment ::= TypeAssignment 
             | ValueAssignment 
             | MacroDefinition 
 
MacroDefinition ::= MacroReference "MACRO" "::=" MacroBody 
 
MacroBody ::= "BEGIN" <SkipToEND> "END" 
            | ModuleReference "." MacroReference 
 
MacroReference ::= TypeReference 
                 | DefinedMacroName 
 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * 
 *  Type Notation Productions 
 * 
 */ 
 
TypeAssignment ::= TypeReference "::=" Type 
 
Type ::= BuiltinType 
       | DefinedType 
       | DefinedMacroType 
 
BuiltinType ::= "BOOLEAN" 
              | "REAL" 
              | "NULL" 
              | "OBJECT" "IDENTIFIER" 
              | IntegerType 
              | StringType 
              | BitStringType 
              | SequenceType 
              | SequenceOfType 
              | SetType 
              | SetOfType 
              | ChoiceType 
              | EnumeratedType 
              | SelectionType 
              | TaggedType 
              | AnyType 
 
IntegerType ::= "INTEGER" [NamedNumberList | ConstraintList] 
 
NamedNumberList ::= "{" NamedNumber ("," NamedNumber)* "}" 
 
NamedNumber ::= Identifier "(" (SignedNumber|DefinedValue) ")" 
 
SignedNumber ::= ["-"] Number 
 
StringType ::= "OCTET" "STRING" [ConstraintList] 
 
BitStringType ::= "BIT" "STRING"  
                  [NamedNumberList | ConstraintList] 
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SequenceType ::= "SEQUENCE" "{" [ElementTypeList] "}" 
 
SequenceOfType ::= "SEQUENCE" [SizeConstraint] "OF" Type 
 
SetType ::= "SET" "{" [ElementTypeList] "}" 
 
SetOfType ::= "SET" [SizeConstraint] "OF" Type 
 
ElementTypeList ::= ElementType ("," ElementType)* 
 
ElementType ::= NamedType  
              | NamedType "OPTIONAL" 
              | NamedType "DEFAULT" NamedValue 
              | [Identifier] "COMPONENTS" "OF" Type 
 
NamedType ::= [Identifier] Type 
 
ChoiceType ::= "CHOICE" "{" ElementTypeList "}" 
 
EnumeratedType ::= "ENUMERATED" NamedNumberList 
 
SelectionType ::= Identifier "<" Type 
 
TaggedType ::= Tag ["IMPLICIT"|"EXPLICIT"] Type 
 
Tag ::= "[" [Class] ClassNumber "]" 
 
ClassNumber ::= Number 
              | DefinedValue 
 
Class ::= "UNIVERSAL" 
        | "APPLICATION" 
        | "PRIVATE" 
 
AnyType ::= "ANY" ["DEFINED" "BY" Identifier] 
 
DefinedType ::= [ModuleReference "."] TypeReference  
                [ConstraintList] 
 
ConstraintList ::= "(" Constraint ("|" Constraint)* ")" 
 
Constraint ::= ValueConstraint 
             | SizeConstraint 
             | AlphabetConstraint 
 
ValueConstraint ::= Value 
                  | ValueRange 
 
ValueRange ::= LowerEndPoint ".." UpperEndPoint 
 
LowerEndPoint ::= (Value|"MIN") ["<"] 
 
UpperEndPoint ::= ["<"] (Value|"MAX") 
 
SizeConstraint ::= "SIZE" "(" ValueConstraint ")" 
 
AlphabetConstraint ::= "FROM" "(" ValueConstraint ")" 
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/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * 
 *  Value Notation Productions 
 * 
 */ 
 
ValueAssignment ::= Identifier Type "::=" Value 
 
Value ::= BuiltinValue 
        | DefinedValue 
 
DefinedValue ::= [ModuleReference "."] Identifier 
 
BuiltinValue ::= BooleanValue 
               | NullValue 
               | SpecialRealValue 
               | SignedNumber 
               | HexString 
               | BinaryString 
               | CharString 
               | ObjectIdentifierValue 
 
BooleanValue ::= "TRUE" 
               | "FALSE" 
 
NullValue ::= "NULL" 
 
SpecialRealValue ::= "PLUS-INFINITY" 
                   | "MINUS-INFINITY" 
 
NamedValue ::= [Identifier] Value 
 
ObjectIdentifierValue ::= "{" ObjIdComponentList "}" 
 
ObjIdComponentList ::= (ObjIdComponent)+ 
 
ObjIdComponent ::= Number 
                 | Identifier 
                 | NameAndNumberForm 
 
NameAndNumberForm := Identifier "(" Number ")" 
                   | Identifier "(" DefinedValue ")" 
 
BinaryString ::= "’" <BinaryChars>* "’B" 
 
HexString ::= "’" <HexadecimalChars>* "’H" 
 
CharString ::= """ <StringWithoutSingleDoubleQuote> """ 
 
Number ::= <PositiveNumber> 
 
Identifier ::= <LowerCaseFirstIndentifier> 
 
ModuleReference ::= <UpperCaseFirstIdentifier> 
 
TypeReference ::= <UpperCaseFirstIdentifier> 
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/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * 
 *  Macro Syntax definitions 
 * 
 */ 
 
DefinedMacroType ::= SnmpObjectTypeMacroType  
                   | SnmpTrapTypeMacroType 
 
DefinedMacroName ::= "OBJECT-TYPE"  
                   | "TRAP-TYPE" 
 
SnmpObjectTypeMacroType ::= "OBJECT-TYPE" 
                            "SYNTAX" Type 
                            SnmpAccessPart 
                            SnmpStatusPart 
                            [SnmpDescrPart] 
                            [SnmpReferPart] 
                            [SnmpIndexPart] 
                            [SnmpDefValPart] 
 
SnmpTrapTypeMacroType ::= "TRAP-TYPE"  
                          "ENTERPRISE" Identifier 
                          [SnmpVarPart] 
                          [SnmpDescrPart] 
                          [SnmpReferPart] 
 
SnmpAccessPart ::= "ACCESS" Identifier 
 
SnmpStatusPart ::= "STATUS" Identifier 
 
SnmpDescrPart ::= "DESCRIPTION" CharString 
 
SnmpReferPart ::= "REFERENCE" CharString 
 
SnmpIndexPart ::= "INDEX" "{" TypeOrValueList "}" 
 
TypeOrValueList ::= TypeOrValue ("," TypeOrValue)* 
 
TypeOrValue ::= Type 
              | Value 
 
SnmpDefValPart ::= "DEFVAL" "{" Value "}" 
 
SnmpVarPart ::= "VARIABLES" "{" VarTypes "}" 
 
VarTypes ::= Identifier ("," Identifier)* 

 


