Automatic GUI creation

— Generating Java source code
from formal descriptions

Master’s thesis in Computer Science
Per Cederberg, d93-pol@nada.kth.se

21°% of March 2000

Supervisor: Viggo Kann (viggo@nada.kth.se)
Department of Numerical Analysis

and Computer Science

Royal Institute of Technology

Supervisorsat Ericsson Telecom:
Ka Bjurman (qtxkaj @etx.ericsson.se)
Arvid Svensson (gtxarvs@etx.ericson.se)

Automatic GUI creation — Generating Java source code from formal descriptions

ABSTRACT

This thesis evaluates the possibility to automatically create a graphical

user interface (GUI) from a formal description of the fields it should
contain. A prototype has been developed for a limited domain of app-
lications—interfaces of configuration and maintenance components.
The prototype reads a formal description in the ASN.1 syntax of the
fields in the interface, allows some interactive changes to the interpre-
tation, and outputs the Java source code that creates the interface.

The generated source is to be used when developing plug-ins for
an operation and maintenance framework, and special care has been
taken to make the code as human readable and understandable as pos-
sible. This effectively means following strict quality norms—indent-
ing, commenting and modularizing the source code, as a human pro-
grammer ought to do.

The results obtained from the prototype have been very encour-
aging, indicating that large parts of the interface can actually be gen-
erated automatically. The prototype also generates some other parts of
the plug-in, which helps structuring the rest of the code. The usage of
an automated tool generally reduces the amount of tiresome and
repetitive work, while also adding more robust input verification and
avoiding some typical bugs.

Automatic GUI creation — Generating Java source code from formal descriptions

Automatisk generering
av grafiska granssnitt

— fran formella beskrivningar till kallkod i Java

SAMMANFATTNING

Denna rapport utvarderar mojligheterna att automatiskt skapa ett gra-
fiskt anvandargranssnitt (GUI) fran en formell beskrivning av de
ingdende falten. En prototyp har utvecklats fér en begransad mangd
applikationer — granssnitt till konfigurerings- och underhallskompo-
nenter. Prototypen laser in en formell beskrivning i ASN.1 av grans-
snittets falt, tillater nagra interaktiva andringar i tolkningen och
skriver ut den Java-kallkod som skapar granssnittet.

Den genererade koden ska anvandas nar man utvecklar kom-
ponenter till ett konfigurerings- och underhallssystem. Speciella han-
syn har tagits for att géra koden sa lasbar och forstaelig som mojligt
for ett manskligt 6ga. Detta har inneburit att strikta normer for kvalitet
har féljts — koden har indenterats, kommenterats och modulariserats
pa samma satt som en mansklig programmerare borde gora.

De resultat som uppnatts med prototypen har varit uppmunt-
rande, indikerande att stora delar av granssnittet faktiskt kan genereras
automatiskt. Prototypen genererar ocksa nagra andra delar av kompo-
nenten, vilket hjalper till att strukturera den aterstaende koden. Att
anvanda ett automatiskt verktyg innebar generellt att mangden trott-
samt och repetitivt arbete kan minskas, samtidigt som mer robust
inmatningsverifiering kan laggas till och nagra typiska fel undvikas.

Automatic GUI creation — Generating Java source code from formal descriptions

TABLE OF CONTENTS

O 4 o [T A o o USSR 9
1.1 BaCKQrOUNGoeeiieiieeciie sttt ettt sre e e esneeereesnneans 9
02 o 0] o = o S 9
1.3 Purpose and Methodccoueiiiiiieiiiccee e 10

2. Analyzing Element DesCriptions........ccocueerereeiienieriese e 10
2.1 Formal element desCriptionS.........cccccveieeiieiiie e 10
2.2 Grammars and PAISINGcoeeererrerererieesieneessesse e sseseseseessesseseessessessesses 12
2.3 WITTING QPAISEN ..ecveecieeeciee et ertee sttt ste et e ae et e e b e e e e e nbeesaaeenbeesnreeres 15
2.4 The prototype MIB Parserccooeierereeieiieniesie s 17

3. Component SEIECLIONc.eeiieeiecee e 19
3.1 The plug-iNniNtEfaCE.ccooeeee e 19
3.2 Interaction iN the PrototYPe........ccceeiiieiee it 21

Vi 7o e [SY 1= 1= - (o o NSRS 24
4.1 Generating source code of high quality.........ccccoeviiiiiiiicccce e 24
4.2 Layered CO0E geNEIatioNccoerererirerieeiie e 26

5. Evaluation and futUr@WOorK ... 29
5.1 Implementation iMProVEMENTS.........ccceerirerese e 29
5.2 FULUIE EXLENSIONS......ccueeiiriiesieeiieeee sttt sttt st be b e ses 30
5.3 Evaluation Of the reSUILS........coieeiee e 32

B. REFEIENCES. ... i 33

AL APPENTICES. ...ttt sb e bttt ettt et e b nae s 34

AL Simplified ASN.L grammar........cccocoeeiieiiieiieciee e eree 34

Automatic GUI creation — Generating Java source code from formal descriptions

1. INTRODUCTION

1.1 Background

The Ericsson IP telephony system consists of several distinct components, each
having its own control and configuration demands. As an important part of the
system, the operation and maintenance (O&M) subsystem consequently must be
able to handle this mixed set of network elements and configuration parameters.

The upcoming O&M system will have a strongly modularized architecture,
delegating the actual management functionality to specialized plug-ins. Thus, in
order to handle a new type of network element, a plug-in must be developed and
installed into the O&M framework. Each plug-in, in turn, must be divided into
several layers of functionality. These layers are typically responsible for graphical
user interface (GUI), interface logic, data backup storage, etc.

1.2 Problem

The development of plug-ins is cumbersome, and major parts of the development

are suitable for automation. By using information from the formal descriptions for

each element, a functioning skeleton plug-in can be created automatically,
reducing development time by an order of magnitude. Apart from speeding up the
development process, automatic code generation also has other benefits—similar
structure will be imposed on all plug-ins (having significant maintenance bene-
fits), interfaces will use standardized components, and some types of bugs will be
avoided to a large extent.

Automatically generating source code is not trivial, however. The GUI
component(s) can be guessed from the formal descriptions, but the selections
made this way must be easy to change. Also, some data representations in the
formal descriptions are not well chosen with respect to their actual contents and
the mapping between data representation and GUI component is neither constant
nor one-to-one.

Clever methods must be used for approximating the component choice,
allowing the component to be changed dynamically, and converting underlying
data to the format suitable for the chosen component. Ideally the automated
process should also allow iterations, as already generated plug-ins may have to be
regenerated when specifications change. The goal must be that automatically
generated code should be at least as easy to maintain and extend as source code
written entirely by hand.

There are several limitations to the results that can be obtained by automati-
cally generating plug-ins. User interface layout and program logic are two exam-
ples of parts that can hardly be created automatically. Neither are highly special-
ized plug-ins a target for automation. The generated code can only be a support
for the plug-in programmer, as several parts of the plug-in cannot be created well
by automatic means.

Automatic GUI creation — Generating Java source code from formal descriptions

1.3 Purpose and method

The main goal with this thesis was to show how far the automatic generation of
the plug-in GUI could be pushed, and to implement these parts in a prototype
application. Additionaly, other parts of the plug-in creation have also been
explained briefly and/or implemented in the prototype.

This thesis will primarily focus on three parts—analysis of the formal
element descriptions, selection of components and other data structures, and code
generation. Emphasis has been put on theory and design decisions, not on imple-
mentation details. For further information on the actual implementation, please
refer to the source code comments.

The prototype application has been implemented in Java, and contains a set
of solutions to the main problems. The prototype generates general, syntactically
correct, indented and commented Java source code with some changes being
necessary to fully fit the plug-in framework.

2. ANALYZING ELEMENT DESCRIPTIONS

In this section the structure and analysis of the formal element descriptions is

explained. The section consists of four parts—the three first containing back-

ground material. The first part introduces the element descriptions and their syn-
tax. The second part explains how grammars work and how they can be used to
analyze a character stream. The third part deals with implementing such an
analysis in Java. The last part, finally, reveals the techniques used and design
decisions made in the prototype analyzer.

2.1 Formal element descriptions

Most of the elements in the Ericsson IP telephony system are configured and
managed remotely with tHémple Network Management Protocol (SNMP, Case

et al., 1990). SNMP is most commonly used to configure routers, gateways and
other network elements on the Internet, and is an Internet Activities Board
recommendation described in RFC 1157.

The SNMP standard requires all manageable elements to have their inter-
face described formally in #anageable Information Base (MIB), a format
described in RFC 1155 (Rose & McCloghrie, 1990). Each MIB typically contains
a list of field and table names associated with their data types, access conditions
and unique identifiers.

The ASN.1 syntax

The MIB files are normal text files written iAbstract Syntax Notation One
(ASN.1, ISO 8824), an ISO standard for declaring variables, composite types and
other structures. Actually only a subset of the full ASN.1 syntax is used in the
MIB files, as defined in RFC 1155 (Rose & McCloghrie, 1990). The fields must
also be declared using the macros defined in RFC 1212 (Rose & McCloghrie,
1991) and RFC 1215 (Rose, 1991).

10

The ASN.1 language is not a full programming language, but only contains
type and structure declarations. Specialized encoders then use the structurd
declarations when encoding or decoding the actual data, the idea being that decla-
rations and low-level representations should be separated. Currently there exists a
number of such encoders, the most commonly undoubtedly being the Basic
Encoding Rules (BER) used with SNMP.

Two simple ASN.1 examples

The syntax of ASN.1 is somewhat different from that of a normal programming
language, as can be seen in example 1. The example shows a simple declaration,
written with the RFC 1212 extensions to the pure syntax. It is worth noting the
lack of delimiter characters, something that makes recovery from input errors
more difficult.

cf gNunber Lengt h OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-wite
STATUS nandat ory
DESCRI PTI ON
"The nunber of digits that nmust follow the VG route
nunber in order to forma full nunber.”
DEFVAL { 3}
:={ config 1}

Example 1. Declaration of an integer field cf gNunber Lengt h with a default
value of 3. The code aso contains the access rights, the implementation
status, and a short description. Finally a unique identifier is defined, in order
to avoid referring to the field by its name.

A more complicated declaration is shown in example 2, at least from the perspec-
tive of automatic code generation. The field is declared as having a data represen-
tation that does not correspond to the actual data content, causing the automatic
code generator to select an inadequate or ill suited visual presentation. Overcom-
ing such difficulties is hardly possible without the usage of sophisticated
heuristics or full natural language processing.

Some disadvantages with ASN.1

ASN.1 has several disadvantages compared to structure declarations in common
programming languages, such as C or Pascal. The declarations tend to be large,
non-compact and cluttered with keywords. Much repetition is also required for
composite structures, as each part is declared twice—first with name and type
inside the composite structure, and then afterwards with all the required parame-
ters.

The typical ASN.1 file is rather large, which stems in part from the use of
long keywords likeOBIJECT- TYPE, SYNTAX andDESCRI PTI ON—being easy to read
for the untrained eye, but requiring much unnecessary and error-prone copying
when writing the MIB files.

11

Automatic GUI creation — Generating Java source code from formal descriptions

cf gLGK1 OBJECT- TYPE
SYNTAX Di spl ayString
ACCESS read-wite
STATUS nandat ory
DESCRI PTI ON
"This is the | P address of the primary Local
Gat ekeeper used by this voi cegat eway.
The address takes the form X. X. X. X where
X is an integer in the range of 0 and 255."
DEFVAL { "" }
:={ config 2}

Example 2. Declaration of a normal string field cf gL&GK1 containing charac-
ters. The string contents should be interpreted as forming avalid IP address,
something only mentioned in the description. Thisis atypical case when the
automatic code generation will not be able to present the field data in an
adequate way.

More implementation relevance has the free ordering of the constructs in ASN.1,
something that cause much trouble when analyzing MIB files. The analysis must
normally be made in at least two passes, as identifiers may be read before being
defined or declared.

Another serious implementation problem is the fact that the basic types have
no size limitation to their contents. Ranges can optionally be specified, but if no
limit is specified the ranges are always supposed to be infinite. The use of infinite
integers, infinite precision floats, and infinite length strings inevitably cause im-
plementation difficulties, as all actual programming languages specify limits to
their basic types. If special care is not taken in all steps of implementation, the
result may well be hidden size dependencies that can be hard to track down.

2.2 Grammars and parsing

In order to analyze a stream of characters a special technique, called parsing, is
normally used. The parsing is divided into three steps, or passes—Ilexical analysis,
syntactic analysis, and semantic analysis. In the lexical analysis, adjacent charac-
ters are grouped together irttikens, more or less like letters are grouped together
into words when we read a normal téxh the syntactic analysis the stream of
tokens is analyzed according to a grammar apat se tree, i.e. a hierarchical tree
grouping the tokens, is created. In the semantic analysis, finally, the information is
extracted from the parse tree and converted into some internal representation.
During all three stages errors in the input can be detected and reported.

! Thisisintended to reflect an intuitive idea on how we read texts, and is not to be understood as a
proven fact. Psychological studies, on the contrary, show that the reading process is mostly based
on direct image recognition of the words. Thisis, however, outside the scope of this thesis.

12

Grammarsand productions

The grammar is absolutely central to the parsing as it controls the input syntax and
the structure of the parse tree (sometimes aso called syntax tree). The choice of
grammar also controls the parser behavior, as different grammar formats implies
different implementation techniques. But to understand this we must first learn
more about grammars.

A grammar is said to consist of a series of productions, i.e. rules, controlling
the structure of the input. As an example a sentence production could state that a
sentence should consist of a noun-phrase, a verb-phrase and a period (see example
3). These parts in turn can be either tokens or references to other productions in
the same grammar. The complete grammar consists of al the productions and
tokens used therein.

Sent ence ::= NounPhrase VerbPhrase "."

Example 3. A BNF description of a sentence consisting of a noun-phrase, a
verb phrase, and a period. “Sentence” is the production being defined.
“NounPhrase” and “VerbPhrase” are names of other productions (not shown
here), and “.” is a reference to a period token.

The grammar itself is normally expressed in BM&okus-Naur Form), which is

a syntax for specifying context free grammars. Each production in BNF consists
of a two parts—the production name and it's definition—separated by=d “
symbol. The definition of the production (to the right of this symbol) consists of
the sequence of tokens and productions that defines it.

The productions can also be more complicated, as would be the case of a
paragraph that consists of one or more sentences. In this case two alternative
productions would be needed to express the full relation, as shown in example 4.
The productions may also refer to themselves in various ways.

Par agraph ::= Paragraph Sentence
| Sentence

Example 4. Two productions expressing that a paragraph must consist of
one or more sentences. Note the usage of “|” to simplify writing alternative
productions with the same name.

Different types of grammars

There are various ways to express the grammar, even if using only strict BNF.
One of the major differences is if the productions in the grammar are left- or right-
recursive, i.e. if the productions may refer to themselves in the first or in the last
position. Other differences include the number of tokens that have to be known in
advance to select among the alternative productions, and whether the input string
should be read from left-to-right or from right-to-left.

13

Automatic GUI creation — Generating Java source code from formal descriptions

The two main families of grammars are the LL and LR grammars; both
being read from left-to-right (which is what the first L means). The LL grammars
are right-recursive, and in contrast the LR grammars are left-recursive. This is
shown more clearly in example 5.

Par agraph ::= Paragraph Sentence
| Sentence
Par agraph ::= Sentence Paragraph

| Sentence

Example 5. Two different possibilities to express the paragraph rule from
example 4. Thefirst versionisa LR form of the rule, while the second is the
corresponding LL form.

The number of “look-ahead” tokens needed to choose among the alternative
productions with the same name is normally stated in a parenthesis after the
grammar family, as in LL(1), for a LL grammar with one token look-ahead. When
specifying this number, the whole grammar must be analyzed and the highest
number of tokens needed is the number that should be stated.

The LR grammars may still contain parts causing conflicts between
alternative productions, at least for the type of parsers in use today. Therefore a
subset of LR, called LALR, that contains some small limitations is normally used
instead. As implementation complexity also rises with the usage of more look-
ahead tokens, the two types of grammars most used in practice are LL(1) and
LALR(2).

More ASN.1 disadvantages

The standard ASN.1 grammar is neither LL(1) nor LALR(1), normally requiring
some rewriting before a parser can be implemented (Rinderknecht, 1995). The
main problem is the ambiguities—the need for a look-ahead of several tokens,
some identical tokens having different names, and the use of empty productions.

oj | dConponent : = NaneForm
| Nunber Form
| NanmeAndNunber For m
NameFor m ii= <identifier>
NameAndNunber Form :: = <identifier> "(" NunmberForm")"

Example 6. A part of the original ASN.1 grammar showing the need|for
more than one token look-ahead. When inside d¢hgl dConponent
production and having an identifier as the next token, two rules may be
chosen.

14

The usage of a look-ahead of several tokens is shown in example 6 and causes
much trouble when attempting to implement a smple parser. More care has to be
taken when creating a parser that handles a look-ahead of more than one token,
and it also slows down parsing considerably.

Two other issues in the ASN.1 syntax that cause problems are the difficulty
to recover from errors and the language extensibility. In many languages declara-
tions are separated with the “;” character, allowing the parser to read until the next
“” upon error in the input. In ASN.1 the only separation is spaces, tabs and new-
lines, making error recovery difficult. The ASN.1 syntax can also be dynamically
extended as macros are defined, something having the potential to make the parser
infinitely complex, should one try to implement it. Most commercial ASN.1
parsers seem to contain only a set of macros, but ignoring the full macro syntax.

2.3 Writing a parser

There are several approaches to writing a parser, but the most common is
undoubtedly to use parser generator, i.e. a program that from a grammar can
generate the source code of the parser. Two of the most popular parser generators
are the lex and yacc tools (or the GNU equivalents flex and bison) that generate C
source code for the lexical and syntactic analyzer. The lex and yacc tools also
exist in versions that generate Java source code (JLex and Cup), but these versions
offer no integration between the lexical and syntactical analyzers (Berk, 1997).

The classical tools for parser generation also have several other problems,
especially when used in an object-oriented environment. For an example, they
don’t support automatic parse tree generation, something that would have required
too much memory at the time when they were developed. Today, however,
memory is not a scarce resource, and multiple pass compilers have become more
common. As a result of the lack of parse tree creation, semantic analysis and
action code must be inserted in the grammar, making the separation between
syntactic and semantic analysis hard to impossible. This mixing up of the later
stages in the parsing typically causes problems with maintainability, extensibility
and complexity.

Object-oriented parsing

In a modern object oriented language a different approach is called for, especially
one that uses the object oriented techniques for encapsulation of data and func-
tions in separate objects. It is also desirable to separate the syntactic and the
semantic analysis in modules, making it possible to do small syntax changes
without having to change the semantic analysis, and, more important, being able
to change the analysis without regenerating the entire parser.

One approach to obtain a more object-oriented parser, is by using delegating
compiler objects (Bosch, 1996). The grammar is then split into smaller parts, each
part being handled by a separate compiler (or parser) object. When parsing the
control is delegated between the various objects, effectively obtaining an object-
oriented modularization.

The approach with delegating compiler objects makes the grammar more
extensible, as only small changes must be made to add a new parser object.
Changes in the compiler are also made simpler and safer, as modules are smaller

15

Automatic GUI creation — Generating Java source code from formal descriptions

and easier to overview. The main drawbacks are that no special division between
syntactic and semantic analysis is made, and that no such parser generator tools
are available for Java

Another way to create an object-oriented parser is by generating a full parse
tree, thereby being able to separate the syntactic and semantic analysis. The
object-oriented paradigm aso supplies a natural and secure model for the parse
tree implementation, with each node as a separate object. This allows for more
secure changes in the tree structure, reducing the risk for inconsistencies and
errors.

JavaCC

The most commonly used parser generator for Java is probably JavaCC (pre-
vioudly called Jack), made freely available for binary downloads by Sun Micro-
systems (Sun, 1999). It generates a recursive-descent parser in Java from a LL(n)
grammar, allowing look-ahead of multiple tokens when choosing productions.
The grammar is written in a specia format that allows Java code to be added to
the grammar productions, much in the same way as when using yacc. It is also
possible to define grammar rules in the form of pure Java code, although this is
not a recommended practice.

The parser generated is divided into several classes that may be replaced or
extended by the user. It is also reasonably fast, and generates understandable
messages upon errors in the input. However, there is only a rudimentary support
for error recovery during parsing. The parser will generally fail upon the first
error, making it difficult to report several errorsin asingle iteration.

A more fundamental problem with JavaCC, though, is the lack of support
for generating parse trees. When inserting the parse tree generation code into the
grammar files, the latter becomes messy and cluttered with Java source code all
over. This design choice is probably an inheritance from the earlier, more
primitive parser generator tools for imperative languages and older systems.

There are a couple of tools that can add code for parse tree generation to the
JavaCC grammar files automatically, but none of them have proved very
convincing when used with the ASN.1 grammar. In general the parse trees
produced are not strongly typed, difficult to extend, and not adapted to the
application at hand. The extra step when generating the parser is also irritating,
and may cause some problems with reserved keywords, etc.

SableCC

A more modern approach to parser generation has been taken by SableCC, a

parser generator developed by Entienne Gagnon at the McGill University
(Gagnon, 1998). SableCC is available both as binary and source code, and is
released under the GNU GPL license, thereby allowing others to modify and
further develop the code.

SableCC generates a table-driven bottom-up parser for a LALR(1) gram-
mar, just as the classical lex and yacc tools. It has many advantages compared to
JavaCC, most notably being the automatic generation of the parse tree. The gener-
ated tree is also strongly typed, i.e. each grammar production is mapped onto a
separate class. The child nodes can thus be accessed with specific methods in each

16

class, having the name of the child node type. The parse tree generated is thus
more robust to syntax changes, as node positions in productions may be changed
freely.

The current version of SableCC has a number of disadvantages, though. The
grammar can only contain lowercase production and token names, the token
definitions are complex, and only strict LALR(1) grammars are accepted. Fur-
thermore there is no support for error recovery, and the error messages generated
during parsing are cryptic and filled with implementation details. Finally, as a
result of the creation of named access methods for all child nodesin the parse tree,
al aternatives in the grammar must be tagged with additional names to become
uniquely identifiable. This includes both productions having the same name, and
multiple identical references within a production. The usage of such tags in the
grammar files can sometimes make them difficult to read.

2.4 The prototype MIB parser

When implementing the final parser for the prototype several small tests with both
JavaCC and SableCC were performed, in order to decide which one to use.
JavaCC was finally chosen as it would be easier to use and produce better error
messages. Using SableCC would have required too much rewriting of the gram-
mar, causing undesired complexity where none would have been needed, and it
would also have rendered the parser less usable, as the error messages would have
become more cryptic and difficult to understand.

The choice of JavaCC also came with the additional cost of implementing
the parse tree generation, as it was important to attempt to split the syntactic and
the semantic analysis into separate modules. Apart from this the grammar had to
be rewritten and a full semantic analysis with error checking and information
extraction had to be implemented.

Rewriting the grammar

One of the first problems encountered when implementing the parser was the lack
of agood and freely available ASN.1 grammar. The first prototype was based on a
grammar extracted from the lex and yacc sources of Shacc, a freely available
ASN.1 compiler. Later the complete ASN.1:90 grammar (in Rinderknecht, 1995)
was encountered and the necessary changes to correct some errors and add mis-
sing constructs could be made.

In order to create a reasonable simple ASN.1 parser, some parts of the
grammar were rewritten—removing the possibility to define macros, but adding
two widely used SNMP macros. The more compact EBNF syntax was used,
instead of the standard BNF, in order to save some productions. The resulting
grammar (the one implemented) can be found in appendix A.1.

Syntax analysis and par se tree generation

The rewritten grammar also had to be converted to the special format used by
JavaCC, and Java code to create the parse tree had to be added. Basically semantic
action code was added to each production in the grammar, creating parse tree
nodes as each production is parsed. Only the nodes needed in the later stages of

17

Automatic GUI creation — Generating Java source code from formal descriptions

analysis were included in the generated parse tree, thereby effectively pruning the
tree already upon creation.

The solution to create the parse tree “by hand” inside the syntactic analysis
became necessary when using JavaCC, but proved to generate a syntax analyzer
that was hard to read and modify. The parse tree, on the other hand, became well
adjusted to the task at hand and could easily be modified when needed.

The parse tree framework was strongly influenced by the models found in
SableCC (Gagnon, 1998, p. 52ff). Each node in the parse tree was represented by
a separate object, and support for parse tree walker (or iterator) classes was also
implemented. Having separate tree walker classes made the implementation of a
multi-pass semantic analyzer fairly simple and straightforward, as all the details
of tree walking had been isolated in separate classes.

One major difference in the SableCC model, however, is that the parse trees
use strong typing, i.e. each production and token type is implemented in a separate
class. The prototype parse trees, on the other hand, do not use strong typing, as
generating that number of classes by hand would have been a too repetitive and
error-prone work. Instead each node is assigned a unique number representing it's
type, and child nodes are accessed through general-purpose methods.

Semantic analysis and data structures

After the creation of the parse tree structure, the semantic analysis processes the
tree in two passes. In the first pass all symbols (field names, types, etc) are identi-
fied and created, and in the second pass they are filled with actual information.
This division was needed as symbols may be used before being declared.

The symbols created during the semantic analysis were modeled closely
after the ASN.1 symbol structures, making the analyzer fairly simple and easy to
implement. This design choice proved to have disadvantages later on, as it became
difficult to separate different types of symbols from each other. Also some special
ASN.1 deficits were inherited, as for example the table symbols having only
indirect access to the column data types.

Some changes and additions were made to the original model as the
prototype developed, but these were not quite enough to make symbol handling
easy in the rest of the prototype. There is still need for a redesigned symbol
structure, especially one where different types of symbols are split into a class
hierarchy. The creation of these more specialized symbols should probably be
placed as a third pass in the semantic analysis, converting all the old symbols to
more specialized ones.

18

3. COMPONENT SELECTION

This section explains how the prototype application selects graphical components
for the plug-in interface. The first part details how a plug-in interface is structured
and how the MIB fields are mapped to components. The second part describes
how the user can interact and change components while creating the plug-in. A
number of screenshots from the prototype are also included.

3.1 The plug-in interface

A plug-in in the operation and maintenance system should be divided into severa
layers of functiondlity. In the lowest layer the actual SNMP transactions are
handled, and in the highest layer data is presented to the user in a graphical user
interface (GUI). Between these two extremes are the other layers, responsible for
interface logic, temporary data storage, and data dependencies.

In a standard MIB file the number of fields is quite high, making it impos-
sible to show them all a once. A normal plug-in interface therefore consists of a
set of tabs, as can be seen in figure 1. Each tab contains a reasonable number of
related fields with some usable layout.

Alarml Channelal Cnntrnll Prupertieal Protocols Miﬁtl

Primary LGK: I 12313221323

Secondarny LGK: I 123132.231.213

Software running: |HCVG media gateway version 1.6 ;I

v autarmatic warkload distribution
Apply |

Figure 1. A plug-in interface is normally a set of tabs, as the amount of
information presented to the user would otherwise be overwhelming. The
interface on each tab is usually more complex than in this ssmplified figure.

Java interface components

A graphical user interface in Java is constructed as a hierarchy of special objects
called components. Each component can be either smple, as alabel or atext field,
or a compound of other components, as a tab panel. The ssimple components are
layout inside the compound ones using specia layout information that can be
provided inside the program.

There are two component hierarchies in Java—the older AWT components,

and the newer Swing components. Both are included in the modern Java platforms

19

Automatic GUI creation — Generating Java source code from formal descriptions

and the Swing components can aso be mixed with the AWT components without
much trouble. As Swing is a newer and more feature-rich solution it is the
recommended choice for most applications, especiadly if they are not required to
run from any old web browser.

The plug-in interfaces use the Swing components as they provide a richer
set of features and are more extensible. Some additional components have been
written to handle specialized data, as numeric IP addresses, and to fill some gaps
missing in the Swing framework. Especially input verification in the components
is needed for the plug-ins.

From fieldsto components

It is worth noting that many data fields require several components in the inter-
face, as labels are sometimes necessary to for provide information about the data
presented (see for example figure 1). This means that the mapping from MIB
fields to components in the plug-in interface cannot be one-to-one, as several
components will have to be generated on some occasions.

The mapping from data type to component is not always obvious, and on
some occasions it may also be impossible to do by automated means, at least with
a satisfying result. The choice of interface components is normally a decision that
involves aspects of human-computer interaction, which means that it is not easily
formalized into simple rules. The result of the automatic mapping from data type
to component will therefore sometimes be mistaken, as it does not take the data
semantics and context into account.

Table 1. The default mapping from field to component depends on both
data type and access. In the case of integers with enumerated values, the
value labels are aso checked for common “boolean” substrings (“yes’,
“true”, “on”, etc). The cells marked with (*) match any alternative.
Datatype Access Component

String read-write JTextField

String read JLabel

Integer read-write JintegerField

Integer read JLabel

Integer with enumerated valuesead-write JCheckBox

(boolean alternatives) & read

Integer with enumerated valuesead-write JComboBox

(other alternatives)

Array *) JTable

*) write JButton

20

In table 1 the default mapping from data type to component is shown. Some of the
components specified in reality also refer to additional labels, as such are needed
in some cases. The mapping is not trivial and contains severa specia cases for
datathat may only be read.

3.2 Interaction in the prototype

Although a lot of information can be extracted from the MIB files, it is not
reasonable to generate the plug-ins in a fully automated fashion. The grouping of
the fields rarely corresponds to the structure in the MIB files, and the default field
to component mapping may cause problems. It is therefore hardly sufficient with
the ssmple command line syntax most compilers have, as such an interface would
be far too complex.

Instead, the interaction called for is that of a graphical user interface,
allowing the user to see the various component selections as well as information
about each field. Using such an interface also gives an easy way to collect the
additional information needed for the code generation, such as the plug-in name,
output package, and output path.

The prototype created therefore provides an interactive graphical interface,
instead of more standard command-line options. The main application window
contains fields for entering all the plug-in creation parameters, as can be seen in
figure 2. The window also displays which MIB files are currently loaded and a list
of the field groups, called “tabs”. The MIB files and the tabs can then be further
viewed in separate dialogs.

Plug-0Out - Y:A\0OMA1AT oolz\Plug-outiprivate\testihcvg plo

File Help

Plug-in name: |HCVG

Base package: |5e.ericssnn.eb{.mtk.plugins.hcvg

Ciutput path: |Y:IOMA1 1Taals\Plug-outiprivatettestisre

~Tabs ~MiBs

Add || Load | YOICEGATEWAYHC

Rermove | Alarm = Unload |
Channels

Rename | Cantrol Edit... |
fisc

Edit... | OrigMod
Properties
Pratocols |
QosAddr
Statistics =

Figure 2. The main application window contains global fields for the plug-
in creation, as well as a list of all tabs and MIB files. The values of all fields
can be saved and restored from the menu, allowing some level of iterrtions

to the plug-in development.

21

Automatic GUI creation — Generating Java source code from formal descriptions

Having a richer interaction also provides natural open and save functions,
allowing plug-in generation parameters to be stored to file for later usage. This
also provides some level of iteration to the plug-in development, as the previous
choices can be stored until processing the next version of the MIB.

Structuring thefields

The structuring of the fields into tabs is difficult to do automatically, as the struc-
ture inside the MIB files does not provide adivision that is recommendable to use
for the interface. The tabs are therefore created manually in the prototype.

Tabs are constructed in two steps; first the tab is created and named, and
second a set of fields is assigned to the tab. The tab creation is done in the lower
left part of the main window (see figure 2), and new tabs can be created at any
time. If a MIB file has been loaded, the fields from it can aso be assigned to one
of the tabs, something normally done in the tab edit dialog (see figure 3).

By default the fields don’'t belong to any tab, meaning that they will be
ignored when generating the output plug-in. Each field may only belong to one
single tab, and will thus be included in the output code for the plug-in and that
specific tab.

Fields may also be loaded from several MIB files, which is sometimes
necessary to allow common fields to be reused among several network com-
ponents. An important restriction to the capability to load several MIB files in the
current prototype is that no two fields may have the same name. If field names are
equal, the generated output code may contain duplicate variable names.

B Edit tab
Free fields: Takh: |Channe|s LI
perfCallTypeTabledize = cfgLicensechannels
perfCallTypeTahle cfglicenseChannelskey
perAlaarithmTypeTahle o

perfalgarithmTypeTahle perPayloadChannels
perflncompleteCallsTab
perincompletecallsTah
pefflncomingCallAtemp
perffnsweredCalls

perftvgCallCuration LA 4
ifcLinkTableSize [

ifeLinkTable =
Al |

Figure 3. The tab edit dialog allows moving free fields to and from specific
tabs. The list of free fields is ordered as the fields appear in the MIB files,
and fields are removed when inserted into a tab.

22

Changing the component mapping

Once a field has been assigned to a specific tab, a component is automatically
chosen with the default field mapping presented previously. The chosen com-
ponent can then be changed to any other component supported by the system,
allowing the user to correct mistakes made in the automated process.

The changing of components is done in the MIB dialog (see figure 4), where
al the fields in the MIB are presented along with analysis information. The tree
structure of the MIB filesis used for presenting the fields to the user, although this
information is not used when actually generating the plug-in.

There is no one-to-one mapping between the components available for
selection, and the components in the underlying Java Swing framework. The
components available are really component generators, as they are also capable of
generating source code for the component. The component generators also handle
the creation of several components where needed, without the need for manual
interaction. Several Swing components are a'so missing as they have little usage
in a plug-in interface, and some new components have been added, such as an
integer field and an IP address field. The user can also choose to not generate a
component for a specific field.

When choosing to not generate a component, the field will be excluded from
the graphical interface, but code will still be generated for lower layers in the
plug-in. The exclusion of a field from the interface does not mean that the data
will not be accessible, asit will still be present in the lower plug-in layers.

] E dit MIB [x]
B+ enterprises Name channelAdrinState Syntax | Enurneration
=3 eriesson ACCBSS: read-wiite Status: | mandatory
E-_4 phonedoubler ' i
EF+ 24 heviiceGatewayMIB Default: Index:
(-] confly Ohject1D: J3E1.41.193.26.11.3.3.1.3
”J performance Description: The requested manusally blocked state for this channel.

14 ds1ife

@ feLinkTableSize

Bl ifcLinkTable

-4 channelTakle
=-_4 channelEntry

channelindex Code generation
channellink Component [Combogox | w| Tab: [cne M|
Sl - hanneltdminState
~# channelOperState Mone i
channelCallAtternpts TextField
-4 channelCompletedCalls IntegerField
- # thanneltnsweredCalls \PAddressField
529 TRARS B-{5] swigrmt ComhoBox
--# seniceStateChange (-heckBox
patnalarm Label
-4 psinAlarmCeasing Buttan
@ dspAlarm
@ dspAlarmCeasing
-4 generalAlarm
--# generalAlarmCeasing
-4 TEXTLAL CONVENTIONS Warning (lines 405-414): hyphen characters ('-') in identifiers cause tr
& TruthValue
DisplayString
--# AyailableCountriesEntry
-4 CallTypeEntry
® AlgorithrnEntry
-4 IncompleteEntry
-4 LinkEntry
ChannelEntry
-4 GofwareTableEntry 4 Ll

Figure 4. The MIB edit dialog makes changing the selected component easy
and straightforward. In addition most of the field information is displayed
along with analysis messages.

23

Automatic GUI creation — Generating Java source code from formal descriptions

4. CODE GENERATION

This section explains how Java code for the plug-in is generated. The first part
discusses general quality requirements on plug-in source code and how well these
have been met in the prototype. The second part explains the design of the
prototype code generator.

4.1 Generating source code of high quality

Generating source code is not trivial, as there are many dependencies between
various files and code parts. The fact that the profession of programmers still

exists (and is rather well paid) also indicates that automatically generated source

code cannot solve all problems. In the case of generating plug-ins there are several

such issues—user interface layout and logic, data interdependencies and program
logic are all extremely hard to handle well in an automated fashion. The introduc-
tion of automated tools will not remove the need for plug-in developers, as several
parts of the code must be inserted by hand.

In order to insert the missing parts, the generated Java source code must be
possible to read, understand, and change by a plug-in programmer. Requiring that
the programmer shall be able to read and understand the code is actually a rather
hard requirement, as it means that the output code must be generally well-written
and commented. The code must be of a high quality and should follow the same
code conventions that the programmer is used to. In specifics this means that the
generated code must be (in parts from Huss, 1993):

* General

e Modularized
e Indented

e Commented
 Correct

» Extensible

* Robust

* Compatible
» Efficient

The sour ce code requirements

That the code be general means that it should be possible to use for as many
purposes as possible. Not only do there exist several distinct types of plug-ins, but
it may also be the case that other plug-in platforms may be used. The generated
code must thus be as general as possible, making it possible to reuse for other
purposes.

Modularization means dividing the generated code into methods and classes
responsible for parts of the functionality. Together with the indentation and
commenting this highly improves the readability of the code for the plug-in
programmer.

24

Correctness means that the generated code must be possible to compile or
that it at least is in such a state that it can be compiled with minimal additions.
There should be no syntactic errors present in the code, and the semantics should
of course a'so make sense, even if it the generated code is only a partial solution.

Extensibility means that the generated code shall be simple to extend with
new functionality, either by changing or adding new methods. This requirement is
only partially met by generating well-structured code, the other part needed is
preserving these additions when generating the plug-in again.

Robustness means handling invalid user input in correct ways. The gener-
ated components must check their entry to the largest possible extent for errors,
and should fail gracefully.

Compatibility means supporting the plug-in platform, something that in
parts collide with the demand of keeping the generated code as general as pos-
sible. A special compatibility demand has been that the components should be
possible to layout with the visua tools in Borland JBuilder 3. This means keeping
the interface creation parts of the code within methods with particular names.

Finally the requirement of efficiency means that the generated code should
not be any slower to execute than hand-made code. No additional lookups or run-
time conversions can be tolerated in the output code—all such computations
should be made already when generating the code.

Limitsin the design

In an ideal world, the generated plug-in programs should always fulfill all of these
requirements. However, in the real world some of these requirements cause
conflicts or excessive work when generating the plug-ins. In the following the
design decisions that have put a limit to these requirements are explained in more
detail.

The generated plug-ins are not totally correct, as they lack several important
features. Some of these features have been left out as they were outside the
original scope of this thesis, i.e. not related to the GUI generation. Others have
been left out as they proved impossible to handle by automated means, as the
component layout. Many parts left out in this way have been commented in the
output source code.

The code is not always possible to compile directly as a result of using some
method names that are not declared in the code. The idea is to allow the
programmer to choose either an adequate superclass or to implement the method
manually. In order to make this choice more obvious, no default alternative is
generated.

The generated code is not fully extensible, as it is hard to avoid overwriting
the source code on disk. That kind of support requires parsing it and keeping track
of user changes, something that would have been a far to large task to undertake.

As there was a conflict between making the code more general or fully
compatible with the plug-in platform used today, the choice was made to not
make the code dependent on the plug-in platform. This means that the generated
classes does not inherit any specialized superclasses from the plug-in framework.

25

Automatic GUI creation — Generating Java source code from formal descriptions

4.2 Layered code generation

There are basically two implementation strategies for automatic code generation.
The output source code can either be partially written in separate files, called
templates, or created totally by the program. Using templates usualy makes it
easier to maintain the code generator, as many changes can be made directly to
the template files instead of in the generator.

Using templates when generating source code of high quality may cause
problems, however, asit isimportant that the output be given a consistent format-
ting. It is aso difficult to maintain the tight connection between the code genera-
tor and the templates, as these are split up into severa files. The better solution is
therefore to handle the code generation inside several specialized modules in the
program.

An approach to generate the source code totally from within the program
calls for some modularization, as it would otherwise be amost impossible to
guarantee high quality of the output source code. The code generation in the
prototype application has therefore been split into three layers—the Java syntax
layer, the file or class layer, and the overall plug-in layer (see figure 5).

Plug-in layer

'

File layer

'

Java syntax layer

'

Output source code

Figure 5. The source code generation is divided into three layers, each one
only calling functions in the layer below. The syntax layer handles| the
syntactic constructs in Java, the file layer handles the dependencies between
different files, and the plug-in layer controls what to generate.

The Java syntax layer

The Java syntax layer generates the actual text files containing the source code. It
creates code for many of the basic syntactic constructs in the Java programming
language—for example class, variable, and method declarations. The output text
is also formatted following the recommendations in the Java coding style guide
(Reddy, 1998).

26

The use of a separate syntax layer guarantees that all the generated code will
follow the same well-defined code conventions, while at the same time making it
easier to change style. As an example, the number of spaces for each indentation
level can be changed by modifying only a single constant in the prototype. The
interfaces provided also makes it easier to generate the source code, as much
complexity and details can be hidden.

The syntax layer consists of a set of classes, each representing a syntactic
construct in the language. From these classes the concrete instances can be created
and combined in the same ways that the Java syntax alows, making it impossible
to generate output code that is not syntactically valid for those constructs (see
figure 6). The top object in such a hierarchy is always a Java source file, and when
writing those objects to disk all substructures are al'so written.

JFile

JClass

JVariable

JMethod

Figure 6. A simplified Java syntax structure. The file object can only have
classes as children. The classes, in turn, can only accept variables and
methods. These rules makes it harder to generate a non-valid Javafile.

In order to keep the syntax layer more effective and compact, only top level
declarations are handled as specialized objects. Declarations and the actual code
inside methods are handled as simple strings, opening up for syntactic errors and
misspellings. It would, however, be difficult to create all the code as a reversed
parse tree, in particular as that would require creating lots of objects in other parts
of the code.

Thefilelayer

A plug-in may consist of a considerable amount of source code files, each
containing one or more Java classes. In order to structure those files correctly, and
keep track of changing variable and method names, a file layer is inserted on top
of the syntax layer to handle this. The file layer aso inserts code and comments
that are the same for al plug-ins.

Thefile layer consists of a set of classes, each modeling a single output file.
Unlike the syntax layer, the file objects may not be freely created and combined,
and other layers can only explicitly create two files—the plug-in file and the tab
file. These two automatically create all other files below them in the hierarchy, in
order to assure that all dependencies become correct.

The file objects also allows some level of manipulation through methods
that can add code to the various files. These calls are translated to the syntax

27

Automatic GUI creation — Generating Java source code from formal descriptions

layer, and each file object keeps an internal reference to the syntax layer objects
needed. The file layer a'so communicates horizontally to a large extent, in order to
assure that variable and method names are the same in the declaration and when
using them.

By using a specialized file layer, the complicated dependencies between the
files (as seen in figure 7) can be kept under control without much effort. The
problems with exporting and importing variables and methods can also be
approached in a safer manner, as each file object is responsible for creating the
references to itsalf.

)/}/[_Plug i (o) \

I - AccessLayer |<—| Datal ayer |‘—| BusinessLayer |<—| BusinessClient | | PresentatlonLayer |
| BusinessResource | | Models | I:l “
| PresentationResource |‘_| TabPanels

Figure 7. The structure of the plug-in source code files. Dependencies
between files have been drawn as arrows from one class to another. Files
with a dotted border are currently not generated by the prototype.

The plug-in layer

On top of the file layer the full plug-in generation is placed, handling such things
as creating the tabs, the components, and everything that is related to the actua
MIB fields. The major part of this layer consists of the component generation, as
the prototype generates little more than skeleton code for the other parts.

The components and all related code are generated by component generator
objects, making the component generation modularized and extensible. Apart
from creating the actual source code, they also provide the simple demonstrations
of the components that are available in the interface (seen in figure 4).

It is not trivial to add new components to the system, however, since each
component is also responsible for generating its own source code. The number of
component generators has therefore been limited in the prototype. Only the most
commonly used components, such as text and number fields, have been imple-
mented in the prototype (see table 2). Some extensions to the standard Java
components have also been made in order to simplify the code generated.

The component generators can be freely interchanged, with the exception of
the table component generator. They all implement a uniform interface and read
the type information direct from the symbols, allowing each component generator
to handle its own subset of the type semantics. Currently the prototype does not
handle type conversions from the underlying data types to the types needed in the

28

Table 2. The component generators available in the prototype can only
create a subset of the components in Java.
Component Description
Label A read-only text field
TextField A text edit field
IntegerField An integer edit field (not standard Java)
IPAddressField A numeric IP address field (not standard Java)
CheckBox A check box for true/false aternatives
ComboBox A field that only allows one of a set of aternatives
Button A push button
Table A table of other components (not freely selectable)

components, since that conversion is complicated to generate automatically and is
outside the scope of thisthesis.

In the current prototype implementation several of the plug-in layers are not
completely generated. The access layer and the plug-in specification files are not
generated at all (see figure 7), partly because they have a trivia structure and are
simple to write by hand. The data and business layers are only generated as stub
code, leaving out important parts of data conversion and inner mechanics. Fixing
this would probably require a substantial effort, especialy if the goal is to keep
the generated plug-ins as general and multi-purpose as possible.

5. EVALUATION AND FUTURE WORK

This section evaluates the results obtained and outlines the further work needed on
the prototype. The first part mentions the known problems and ssimpler improve-
ments remaining to be done. The second part discusses a number of future
extensions that could make the tool more powerful. The last part concludes that it
was possible to automate large parts of the plug-in creation.

5.1 Implementation improvements

There are severa possible improvements to the current prototype implementation,
both in the user interface and in some of the internal data structures. Some of
these issues are known and have been detected in late stages of the development,
leaving too little time to correct them. In the following, the known improvements
are listed along with an estimation of how much time it would take to implement
them. The time estimates refer to a developer familiar with the prototype code
organization, algorithms and data structures.

29

Automatic GUI creation — Generating Java source code from formal descriptions

Closing the dialogs (4 hours)

Neither the tab nor the MIB edit dialogs contain close buttons, something that
may be confusing to some users. It would therefore be good if such buttons could
be inserted without making the interface more complicated than it already is.

Reordering the tabs (1 day)

The tabs are currently sorted in alphabetical order, which is clearly not the order
in which they should be generated to the plug-in. The ordering should instead be
possible to change by dragging and dropping in the tab list.

Multiple MIB dialogs (1 day)

It should be possible to view various MIB files at a time, which means making the
MIB dialog non-modal. It should not be possible to have severa diaogs viewing
the same MIB, which can happen in the current implementation if the user double-
clicks the button. There are also some problems deciding what shall happen if the
user unloads a MIB currently viewed or loads another plug-in. This must be
solved before making the MIB dialog non-modal.

Better error handling (5 days)

Errors encountered in the MIB files are displayed immediately, but the original
text is not shown. Storing the text inside the parse tree would require much
additional work, but reading the file again is probably both possible and fast
enough. Warnings should be handled in the same way, and should also be
displayed immediately in a separate dialog or window. Ideally the application
should launch a MIB editor alowing the user to correct the mistakesin thefile.

Symbol data structure change (5 days)

The symbol data structure, used for handling the MIB fields and data types inter-
nally, is too closely modeled after the ASN.1 syntax. Some new models need to
be defined for symbol and type information, making the symbols easier to use in
the code generation. A third pass in the MIB analysis would have to be added,
trandating the old symbol model into the new one.

5.2 Future extensions

There are severa parts remaining to be designed and implemented in the proto-
type application, especiadly to generate the data access and data logic layers. In
the following, most of the possible extensions are listed along with an estimation
of how much time it would take to implement them. The time estimates refer to a
developer familiar with the prototype code organization, algorithms and data
structures.

Modularize the plug-in data layer (3 days)

The data layer of the generated plug-in should not be a monolithic class, but split
into separate modules. A better modularization would save much work and
increase speed, as the data is currently transferred in whole blocks to the network
element currently configured. This separation could be made from the branches in

30

the MIB, but might require that the internals of the MIB symbols be somewhat
improved.

Convert field data to component data (unknown)

The low-level data representation is not always the same as the one used in the
components. Some kind of intelligent type conversion must therefore be inserted
in the business layer of the generated plug-in. Of course such a conversion would
not be able to handle all conversions correctly, as it is not always clear what the
mapping would be.

Generating user interface tooltips (5 days)

The generated plug-in user interface should contain tooltips, i.e. explanatory texts
that are displayed when the user hoovers over the component with the pointer.
This information could be extracted automatically from the field comments in the
MIB, but must be possible to edit as the comments are not always suitable. This of
course a'so means changing the file format when storing plug-in generation data,
as the new text would have to be stored along with other information.

Editing theinterface labels (3 days)

The labels that some components have in the interface should be editable. This of
course also means changing the file format when storing plug-in generation data,
as the new text would have to be stored along with other information.

Onefield in varioustabs (4 days)

A field from the MIB files should be possible to include in various tabs, as it is
needed in some plug-ins. Apart from changing inside the symbols, this would also
require that the tab edit dialog be reimplemented to support an additional view of
the fields. In the code generation special care would also have to be taken not to
duplicate information in the lower plug-in layers.

Preview of tabs (2 days)

Currently example components are shown for each field, but it would also be
good to be able to test the whole plug-in interface and all the tabs simultaneously.
Ideally such a preview would also allow dragging the components, thereby gener-
ating a draft layout.

Generating SNM P agent (unknown)

The SNMP requests sent by the plug-in client are received by an agent (or server)
in the other end of the communication. This agent is normally written in C and
contains separate functions for each of the fields in the MIB. It would be of great
value if stub code for these functions could be generated automatically, assuring
that all fields used by the plug-in would also be handled by the SNMP agent. The
most time consuming part of this would probably be creating a C syntax layer in
the code generation.

31

Automatic GUI creation — Generating Java source code from formal descriptions

5.3 Evaluation of the results

The overall results from the prototype have been very encouraging—a user inter-

face could be created from the MIB files and the lower layers of the plug-in seem
viable for automation. The prototype application addresses several issues not
originally planned, as the creation of language resource files and data layer stubs,
and produces code of a higher quality than originally thought possible.

Most of the troubles have been caused by the MIB parsing, something not
anticipated before embarking on it. The component selection, on the other hand,
proved almost trivial once the right approach was taken. The code generation
layering was developed in an iterative fashion and was very successful in solving
many of the problems with dependencies in the code.

Somewhat discouraging, though, has been the weak support from the
organization. The plug-in developers have shown little interest in the prototype,
resulting in a product that has not been tested in a real-world setting. Several bugs
and mistakes will probably be revealed once such testing is actually performed.

32

6. REFERENCES

Berk, Elliot (1995); JLex: A lexical analyzer generator for Java, Users manual
for version 1.2, <ht t p: / / ww. cs. pri ncet on. edu/ ~appel / noder n/ j ava/
JLex/ current/ mnual . ht mM > visited November 1999

Bosch, Jan (1996); “Delegating Compiler Objects — an Object-Oriented
Approach to Crafting CompilersGompiler construction: 6th International
Conference, Tibor Gyimaothy (editor), Springer Verlag, Berlin

Case, Fedor, Schoffstall & Davin (1990); A Smple Network Management
Protocol (SNMP), RFC 1157, sttp: //ww. ietf.org/rfc/rfcll57.txt>
visited September 1999

Gagnon, Entienne (1998)SableCC — an object-oriented compiler framewgrk
School of Computer Science, McGill University, Montreal,
<http://ww. sabl e. ncgi | | . ca/ sabl ecc/ > visited September 1999

Huss, Hakan (1993)Grundlaggande programkvalit¢fundamentals of Program
Quality), from the course material to “Introduktion till Datalogi (2D1340)”
(Introduction to Computer Science) at the Department of Numerical Analysis
and Computing Science (Nada), Royal Institute of Technology (KTH)

I SO 8824; Information technology — Open Systems Interconnection —
Specification of Abstract Syntax Notation One (ASNhigrnational
Organization for Standardization, International Standard 8824, 1990

Reddy, Achut (1998); A Coding Style Guide for Java WorkShop and Java Studio
Programming Sun Microsystems, <ht t p: / / www. sun. comf wor kshop/ j ava/
wp- codi ng/ > visited December 1999

Rinderknecht, Christian (1995); Parsing ASN.1:1990 with Caml LighNRIA
Technical Report #171, <http://cristal.inria.fr/~rinderknecht/
publ i s. ht m > visited September 1999

Rose, M. (1991); A Convention for Defining Traps for use with the SNKRPC
1215, <http://wmw. i etf.org/rfc/rfcl215.txt> visited September 1999

Rose & McCloghrie (1990); Structure and ldentification of Management
Information for TCP/IP-based InterneRFC 1155,
<http://ww. ietf.org/rfc/rfcll55.txt> visited September 1999

Rose & McCloghrie (1991); Concise MIB DefinitionsRFC 1212,
<http://www ietf.org/rfc/rfcl212.txt> visited September 1999

Sun Microsystems, Inc (1999); JavaCC 1.0 Documentatipn
<htt p: / / www. met amat a. com’ JavaCC/ > visited September 1999

33

Automatic GUI creation — Generating Java source code from formal descriptions

A. APPENDICES

A.1 Simplified ASN.1 grammar

/*

* Sinplified EBNF gramar for ASN. 1:90

*

* Version: 1.2

* Dat e: 10t h of August 1999

* Aut hor: Per Cederberg, qtxpece@tx.ericsson.se

*

* This grammar has been extracted fromthe yacc and | ex
* sources of ’'snacc’, a GNU ASN. 1 to C or C++ conpiler by
* Mke Sanple. It has then been nodified and cl eaned,
* making it sinpler and nore conpact. Sone additional

* types commonly used in Internet M Bs have al so been

* added.

*/

/* *x * * * % *x * *x * % *x * *x * *x *x * *x * *x * * *x * *x * * *x * *x * *

* Mbdul e def/inport/export productions

*/
Start ::= Modul eDefinition
Modul eDefinition ::= Mdul eldentifier "DEFIN TIONS' [TagDef aul t]
"::=" "BEA N' [Modul eBody] "END"
TagDefault ::= "EXPLICIT" "TAGS"
| "IMPLICIT" "TAGS"
Modul el dentifier ::= Mdul eReference [(hjectldentifierVal ue]
Modul eBody ::= [Exports] [Inports] AssignmentlList
Exports ::= "EXPORTS" [Synbol List] ";"
I mports ::= "I MPORTS" [Synbol sFrom\vbdul eList] ";"
Synbol sFronVodul eLi st ::= (Synbol sFronibdul e) +
Synbol sFronmvbdul e ::= Synbol Li st "FROM' Modul el dentifi er
Synbol Li st ::= Synmbol ("," Synbol)*
Synbol ::= TypeReference

| lIdentifier
| DefinedMacr oNane

34

AssignnentList ::= (Assignment [";"])+

Assi gnnent = TypeAssi gnnent
| Val ueAssi gnnent
| MacroDefinition
MacroDefinition ::= MacroRef erence "NMACRO'
Macr oBody ::= "BEGQ N' <Ski pToEND> " END'
| Modul eReference "." MacroRef erence
Macr oRef erence ::= TypeRef erence

| DefinedMacr oNane

/)\' *x * *x * % *x * *x * * *x * *x * * *x * %
*

* Type Notation Productions

*

*/
TypeAssi gnnent ::= TypeReference ":.:="
Type ::= BuiltinType
| DefinedType
| DefinedMacroType
Buil tinType ::= "BOOLEAN'
" REAL"
" NULL"

"OBJECT" "I DENTI FI ER"
I nt eger Type
StringType
BitStringType
SequenceType
Sequenced Type
Set Type

Set Of Type

Choi ceType
Enuner at edType
Sel ecti onType
TaggedType
AnyType

I nt eger Type ::

NanmedNumber Li st ::= "{" NanedNunber (","

NanmedNurmber ::= ldentifier "(" (SignedNunber| Defi nedVal ue)
Si gnedNunmber ::= ["-"] Nunber

StringType ::= "OCTET" "STRING' [ConstraintList]
BitStringType ::= "BIT" "STRI NG’

[NamedNunber Li st | ConstraintList]

Macr oBody

* x % *x * % * * *x * *x * * %

Type

"I NTECER' [NamedNunber Li st

Constrai nt Li st]

NanmedNumber)* "}

35

Automatic GUI creation — Generating Java source code from formal descriptions

SequenceType ::= "SEQUENCE" "{" [El enent TypeList] "}"
SequenceX Type ::= "SEQUENCE" [Si zeConstraint] "OF" Type
Set Type ::= "SET" "{" [El enent TypeList] "}"

Set Of Type ::= "SET" [SizeConstraint] "OF" Type

El ement TypelLi st ::= El enentType ("," El ement Type)*

El enment Type ::= NanmedType

| NamedType " OPTI ONAL"
| NamedType "DEFAULT" NanedVal ue
| [ldentifier] "COVWPONENTS' "OF" Type

NanmedType ::= [ldentifier] Type
Choi ceType ::= "CHO CE" "{" El ement TypeList "}"
Enumer at edType ::= "ENUMERATED' NamedNumnber Li st
Sel ectionType ::= Identifier "<" Type
TaggedType ::= Tag ["IMPLICI T"|"EXPLICI T"] Type
Tag ::= "[" [Oass] CassNunber "]"
Cl assNunber ::= Nunber
| DefinedVal ue
Cl ass = "UN VERSAL"
| " APPLI CATI ON'
| " PRI VATE"
AnyType ::= "ANY" ["DEFI NED' "BY" Identifier]
Def i nedType ::= [Modul eReference "."] TypeReference
[ConstraintList]
ConstraintList ::= "(" Constraint ("|" Constraint)* ")"
Constrai nt = Val ueConstrai nt
| SizeConstraint
| Al phabet Constrai nt
Val ueConstraint ::= Val ue
| Val ueRange
Val ueRange ::= Lower EndPoint ".." Upper EndPoi nt

Lower EndPoi nt (value|"M N') ["<"

Upper EndPoint ::= ["<"] (Val ue|"MAX")
Si zeConstraint ::= "SIZE" "(" ValueConstraint ")"
Al phabet Constraint ::= "FROM' "(" ValueConstraint ")"

36

/* * *x * *x * * *x * *x * *x *x * *x * * *x * *x * *x * * *x * *x * * * * *x *

*

* Val ue Notation Productions
*

*/
Val ueAssi gnnent ::= ldentifier Type "::=" Value
Val ue ::= BuiltinVal ue

| DefinedVal ue

Def i nedval ue ::= [Mbdul eReference "."] Identifier
Bool eanVal ue

Nul | Val ue

Speci al Real Val ue

Si gnedNunber

Bui |l ti nVal ue ::

HexString
Bi naryString
Char String
Cbj ectl dentifierVal ue
Bool eanVal ue ::= "TRUE"
| "FALSE"
Nul I Val ue ::= "NULL"
Speci al Real Val ue ::= "PLUS-I NFI NI TY"
| "M NUS-I NFI NI TY"
NanedVal ue ::= [ldentifier] Value
ojectldentifiervalue ::= "{" ObjldConponentList "}"
oj | dConponent Li st ::= (Obj | dConponent) +
oj | dConponent Nunmber

| Identifier
| NanmeAndNunber For m

NarmeAndNunber Form : = ldentifier "(" Nunmber ")"

| ldentifier "(" Definedvalue ")"

BinaryString ::= """ <BinaryChars>* "’'B"

HexString ::= """ <Hexadeci mal Chars>* "' H'
CharString ::= """ <StringWthout Si ngl eDoubl eQuote> """
Nunber ::= <PositiveNunber>

Identifier ::= <LowerCaseFirstlndentifier>
Modul eRef erence ::= <UpperCaseFirstldentifier>

TypeRef erence ::= <Upper CaseFirstldentifier>

37

Automatic GUI creation — Generating Java source code from formal descriptions

/* * *x * % * * *x * *x * * *x * *x * * *x * *x * *x * * *x * *x * * * * *x *
*

* Macro Syntax definitions
*

*/

Def i nedMacr oType ::= SnnpCbj ect TypeMacr oType
| SnnmpTrapTypeMacr oType

Def i nedMacr oNane ::= " OBJECT- TYPE"
| " TRAP- TYPE"

SnnpQbj ect TypeMacr oType ::= "OBJECT- TYPE"

" SYNTAX" Type
SnnpAccessPart
SnnpSt at usPar t

[ShmpDescr Part]
[ShmpRef er Part]
[Snnpl ndexPart]
[SnnpDef Val Part]

SnnpTrapTypeMacr oType :: = "TRAP- TYPE"
"ENTERPRI SE" |dentifier
[SnnpVar Part]
[ShmpDescr Part]
[ShmpRef er Part]
SnnpAccessPart ::= "ACCESS" Identifier
SnnpSt atusPart ::= "STATUS" Identifier

"DESCRI PTI ON' Char String

SnnpDescr Par t

SnnpRef er Par t " REFERENCE" Char String

Snpl ndexPar t "I NDEX" "{" TypeOrVal ueList "}"

TypeOrVal ueLi st ::= TypeOrValue ("," TypeOrVal ue)*
TypeOrVal ue ::= Type
| Val ue
SnnpDef Val Part ::= "DEFVAL" "{" Value "}"
SnnpVar Part ::= "VARI ABLES" "{" VarTypes "}"
Var Types ::= ldentifier ("," Identifier)*

38

